IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Synthesis of Bottom-Up and Top-Down Approaches to Climate Policy Modeling: Electric Power Technologies and the Cost of Limiting U.S. CO2 Emissions

  • Ian Sue Wing

    ()

    (Geography Boston University)

Registered author(s):

    In the U.S., the bulk of CO2 abatement induced by carbon taxes comes from electric power. This paper incorporates technology detail into the electricity sector of a computable general equilibrium model of the U.S. economy to characterize electric power’s technological margins of adjustment to carbon taxes and to elucidate their general equilibrium effects. Compared to the top-down production function representation of the electricity sector, the technology-rich bottom-up specification produces less abatement at a higher welfare cost, suggesting that bottom-up models do not necessarily generate lower costs of abatement than top-down models. This result is shown to be sensitive to the elasticity with which technologies’ generating capacities adjust to relative prices

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://people.bu.edu/isw/papers/top-down_bottom-up_static.pdf
    File Function: main text
    Download Restriction: no

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2005 with number 21.

    as
    in new window

    Length:
    Date of creation: 11 Nov 2005
    Date of revision:
    Handle: RePEc:sce:scecf5:21
    Contact details of provider: Web page: http://comp-econ.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Austan Goolsbee & David B. Gross, 1997. "Estimating Adjustment Costs with Data on Heterogeneous Capital Goods," NBER Working Papers 6342, National Bureau of Economic Research, Inc.
    2. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    3. Thomas Rutherford, 1987. "Implementational Issues and Computational Performance Solving Applied General Equilibrium Models with SLCP," Cowles Foundation Discussion Papers 837, Cowles Foundation for Research in Economics, Yale University.
    4. Austan Goolsbee, 1998. "The Business Cycle, Financial Performance, and the Retirement of Capital Goods," NBER Working Papers 6392, National Bureau of Economic Research, Inc.
    5. Fullerton, Don, 1983. "Transition Losses of Partially Mobile Industry-Specific Capital," The Quarterly Journal of Economics, MIT Press, vol. 98(1), pages 107-25, February.
    6. Bohringer, Christoph, 1998. "The synthesis of bottom-up and top-down in energy policy modeling," Energy Economics, Elsevier, vol. 20(3), pages 233-248, June.
    7. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    8. Wilson, Deborah & Swisher, Joel, 1993. "Exploring the gap : Top-down versus bottom-up analyses of the cost of mitigating global warming," Energy Policy, Elsevier, vol. 21(3), pages 249-263, March.
    9. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    10. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.