IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v33y2011i5p1024-1034.html
   My bibliography  Save this article

Supply of renewable energy sources and the cost of EU climate policy

Author

Listed:
  • Boeters, Stefan
  • Koornneef, Joris

Abstract

What are the excess costs of a separate 20% target for renewable energy as a part of the EU climate policy for 2020? We answer this question using a computable general equilibrium model, WorldScan, which has been extended with a bottom-up module of the electricity sector. The model set-up makes it possible to base the calibration directly on available estimates of costs and capacity potentials for renewable energy sources. In our base case simulation, the costs of EU climate policy with the renewables target are 6% higher than those of a policy without this target. The uncertainty in this estimate is considerable, however, and depends on our assumptions about the availability of low-cost renewable energy: the initial cost level, the steepness of the supply curves and share of renewable energy in the baseline. Within the range we explore, the excess costs vary from zero (when the target is not a binding constraint) to 32% (when the cost progression and the initial cost disadvantage for renewable energy are high and its initial share is low).

Suggested Citation

  • Boeters, Stefan & Koornneef, Joris, 2011. "Supply of renewable energy sources and the cost of EU climate policy," Energy Economics, Elsevier, vol. 33(5), pages 1024-1034, September.
  • Handle: RePEc:eee:eneeco:v:33:y:2011:i:5:p:1024-1034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988311000880
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Doukas, Haris & Mannsbart, Wilhelm & Patlitzianas, Konstantinos D. & Psarras, John & Ragwitz, Mario & Schlomann, Barbara, 2007. "A methodology for validating the renewable energy data in EU," Renewable Energy, Elsevier, vol. 32(12), pages 1981-1998.
    2. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
    3. Resch, Gustav & Held, Anne & Faber, Thomas & Panzer, Christian & Toro, Felipe & Haas, Reinhard, 2008. "Potentials and prospects for renewable energies at global scale," Energy Policy, Elsevier, vol. 36(11), pages 4048-4056, November.
    4. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    5. Stefan Boeters & M.G.J. den Elzen & Ton Manders & Veenendaal. P.J.J. & Gerard Verweij, 2007. "Post-2012 climate policy scenarios," CPB Special Publication 70, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    7. R. G. Lipsey & Kelvin Lancaster, 1956. "The General Theory of Second Best," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 24(1), pages 11-32.
    8. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
    9. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    10. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    3. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    4. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    5. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    6. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    7. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
    8. Willenbockel, Dirk, 2017. "Macroeconomic Effects of a Low-Carbon Electricity Transition in Kenya and Ghana: An Exploratory Dynamic General Equilibrium Analysis," MPRA Paper 78070, University Library of Munich, Germany.
    9. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    10. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    11. Soummane, Salaheddine & Ghersi, Frédéric & Lefèvre, Julien, 2019. "Macroeconomic pathways of the Saudi economy: The challenge of global mitigation action versus the opportunity of national energy reforms," Energy Policy, Elsevier, vol. 130(C), pages 263-282.
    12. Abrell, Jan & Rausch, Sebastian, 2016. "Cross-country electricity trade, renewable energy and European transmission infrastructure policy," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 87-113.
    13. Xavier Labandeira, Pedro Linares and Miguel Rodriguez, 2009. "An Integrated Approach to Simulate the impacts of Carbon Emissions Trading Schemes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    14. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    15. Lekavičius, Vidas & Galinis, Arvydas & Miškinis, Vaclovas, 2019. "Long-term economic impacts of energy development scenarios: The role of domestic electricity generation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Ruben Bibas & Aurélie Méjean, 2014. "Potential and limitations of bioenergy for low carbon transitions," Climatic Change, Springer, vol. 123(3), pages 731-761, April.
    17. Milad Maralani & Milad Maralani & Basil Sharp & Golbon Zakeri, 2016. "The Potential Impact of Industrial Energy Savings on The New Zealand Economy," EcoMod2016 9308, EcoMod.
    18. Stefan Nabernegg & Birgit Bednar-Friedl & Fabian Wagner & Thomas Schinko & Janusz Cofala & Yadira Mori Clement, 2017. "The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India," Energies, MDPI, vol. 10(3), pages 1-26, March.
    19. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    20. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.

    More about this item

    Keywords

    EU climate policy Renewable energy Computable general equilibrium model;

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:33:y:2011:i:5:p:1024-1034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.