IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic10.html
   My bibliography  Save this article

Long-term economic impacts of energy development scenarios: The role of domestic electricity generation

Author

Listed:
  • Lekavičius, Vidas
  • Galinis, Arvydas
  • Miškinis, Vaclovas

Abstract

The development of domestic energy generation is often expected to provide benefits to the economy through, for example, improved energy trade balance and jobs created. However, the economic impacts of energy development scenarios are not limited to the energy sector, and the decision makers must consider the impacts on the entire economy. In this paper, we analyse the full impacts of increased domestic electricity generation in a computable general equilibrium (CGE) framework. Realistic energy development scenarios are modelled using the MESSAGE energy system model and considered to be exogenously described energy pathways that generate responses from the remaining economy. These technically and economically consistent energy scenarios are incorporated into the computable general equilibrium model through the creation of fixed, variable, and investment cost structures for the energy forms considered. Model application in Lithuanian case revealed the interchangeable character of electricity imports and local generation based on a relatively significant share of imported resources. Depending on electricity market conditions, scenarios with higher domestic electricity generation levels might fail to provide substantial economic benefits: although increasing electricity import prices would create preconditions to increase domestic electricity production and turn Lithuania to the net electricity exporter, gross domestic product (GDP) might decrease due to the negative impacts on other economic activities. International cooperation for least-cost clean energy supply might be economically beneficial to energy importing countries and increasing domestic electricity generation should not be set as the ultimate goal.

Suggested Citation

  • Lekavičius, Vidas & Galinis, Arvydas & Miškinis, Vaclovas, 2019. "Long-term economic impacts of energy development scenarios: The role of domestic electricity generation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:10
    DOI: 10.1016/j.apenergy.2019.113527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andy Van den Dobbelsteen & Craig Lee Martin & Greg Keeffe & Riccardo Maria Pulselli & Han Vandevyvere, 2018. "From Problems to Potentials—The Urban Energy Transition of Gruž, Dubrovnik," Energies, MDPI, vol. 11(4), pages 1-18, April.
    2. repec:hal:spmain:info:hdl:2441/11505qn4ak95irt0cafaeim81j is not listed on IDEAS
    3. Sarica, Kemal & Tyner, Wallace E., 2013. "Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach," Energy Economics, Elsevier, vol. 40(C), pages 40-50.
    4. Cohen, Stuart M. & Caron, Justin, 2018. "The economic impacts of high wind penetration scenarios in the United States," Energy Economics, Elsevier, vol. 76(C), pages 558-573.
    5. Davor Mikulić & Željko Lovrinčević & Damira Keček, 2018. "Economic Effects of Wind Power Plant Deployment on the Croatian Economy," Energies, MDPI, vol. 11(7), pages 1-20, July.
    6. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    7. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.
    8. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    9. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    10. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E., 2016. "Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?," Energy Policy, Elsevier, vol. 98(C), pages 400-411.
    11. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    12. Kravanja, Zdravko & Čuček, Lidija, 2013. "Multi-objective optimisation for generating sustainable solutions considering total effects on the environment," Applied Energy, Elsevier, vol. 101(C), pages 67-80.
    13. Markandya, Anil & Arto, Iñaki & González-Eguino, Mikel & Román, Maria V., 2016. "Towards a green energy economy? Tracking the employment effects of low-carbon technologies in the European Union," Applied Energy, Elsevier, vol. 179(C), pages 1342-1350.
    14. Tourkolias, C. & Mirasgedis, S., 2011. "Quantification and monetization of employment benefits associated with renewable energy technologies in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2876-2886, August.
    15. Hondo, Hiroki & Moriizumi, Yue, 2017. "Employment creation potential of renewable power generation technologies: A life cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 128-136.
    16. Bulavskaya, Tatyana & Reynès, Frédéric, 2018. "Job creation and economic impact of renewable energy in the Netherlands," Renewable Energy, Elsevier, vol. 119(C), pages 528-538.
    17. Garrett-Peltier, Heidi, 2017. "Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model," Economic Modelling, Elsevier, vol. 61(C), pages 439-447.
    18. Cai, Mattia & Cusumano, Niccolò & Lorenzoni, Arturo & Pontoni, Federico, 2017. "A comprehensive ex-post assessment of RES deployment in Italy: Jobs, value added and import leakages," Energy Policy, Elsevier, vol. 110(C), pages 234-245.
    19. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    20. Lehr, Ulrike & Lutz, Christian & Edler, Dietmar, 2012. "Green jobs? Economic impacts of renewable energy in Germany," Energy Policy, Elsevier, vol. 47(C), pages 358-364.
    21. Lambert, Rosebud Jasmine & Silva, Patrícia Pereira, 2012. "The challenges of determining the employment effects of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4667-4674.
    22. Koesler, Simon & Schymura, Michael, 2012. "Substitution elasticities in a CES production framework: An empirical analysis on the basis of non-linear least squares estimations," ZEW Discussion Papers 12-007, ZEW - Leibniz Centre for European Economic Research.
    23. Perrier, Quentin & Quirion, Philippe, 2018. "How shifting investment towards low-carbon sectors impacts employment: Three determinants under scrutiny," Energy Economics, Elsevier, vol. 75(C), pages 464-483.
    24. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    25. Komušanac, Ivan & Ćosić, Boris & Duić, Neven, 2016. "Impact of high penetration of wind and solar PV generation on the country power system load: The case study of Croatia," Applied Energy, Elsevier, vol. 184(C), pages 1470-1482.
    26. Patricia Fortes & Sofia Simões & Júlia Seixas & Denise Van Regemorter & Francisco Ferreira, 2013. "Top-down and bottom-up modelling to support low-carbon scenarios: climate policy implications," Climate Policy, Taylor & Francis Journals, vol. 13(3), pages 285-304, May.
    27. Németh, Gabriella & Szabó, László & Ciscar, Juan-Carlos, 2011. "Estimation of Armington elasticities in a CGE economy-energy-environment model for Europe," Economic Modelling, Elsevier, vol. 28(4), pages 1993-1999, July.
    28. Simas, Moana & Pacca, Sergio, 2014. "Assessing employment in renewable energy technologies: A case study for wind power in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 83-90.
    29. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    30. Fischer, W. & Hake, J.-Fr. & Kuckshinrichs, W. & Schröder, T. & Venghaus, S., 2016. "German energy policy and the way to sustainability: Five controversial issues in the debate on the “Energiewende”," Energy, Elsevier, vol. 115(P3), pages 1580-1591.
    31. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    32. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    33. Prebeg, Pero & Gasparovic, Goran & Krajacic, Goran & Duic, Neven, 2016. "Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 1493-1507.
    34. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    35. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lekavičius, V. & Bobinaitė, V. & Galinis, A. & Pažėraitė, A., 2020. "Distributional impacts of investment subsidies for residential energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Le Treut, Gaëlle & Lefèvre, Julien & Lallana, Francisco & Bravo, Gonzalo, 2021. "The multi-level economic impacts of deep decarbonization strategies for the energy system," Energy Policy, Elsevier, vol. 156(C).
    3. Alejandro Betancur-Ramos & John Grimaldo-Guerrero & John William Grimaldo-Guerrero & Juan Rivera-Alvarado & Eilin G mez-Mesino, 2022. "Users, Vehicles Electrics, and Energy Markets in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 11-17, September.
    4. Sarasa, Cristina & Turner, Karen, 2021. "Can a combination of efficiency initiatives give us “good” rebound effects?," Energy, Elsevier, vol. 235(C).
    5. Pratiwi, Astu Sam & Trutnevyte, Evelina, 2022. "Decision paths to reduce costs and increase economic impact of geothermal district heating in Geneva, Switzerland," Applied Energy, Elsevier, vol. 322(C).
    6. Shi, Yong & Ren, Xinyue & Guo, Kun & Zhou, Yi & Wang, Jun, 2020. "Research on the economic development pattern of Chinese counties based on electricity consumption," Energy Policy, Elsevier, vol. 147(C).
    7. Ghazal Shahpari & Hossein Sadeghi & Malihe Ashena & David García-León, 2022. "Drought effects on the Iranian economy: a computable general equilibrium approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4110-4127, March.
    8. Karbasioun, Matin & Gholamalipour, Afshin & Safaie, Nasser & Shirazizadeh, Rasool & Amidpour, Majid, 2023. "Developing sustainable power systems by evaluating techno-economic, environmental, and social indicators from a system dynamics approach," Utilities Policy, Elsevier, vol. 82(C).
    9. Samy Yousef & Vidas Lekavičius & Nerijus Striūgas, 2023. "Techno-Economic Analysis of Thermochemical Conversion of Waste Masks Generated in the EU during COVID-19 Pandemic into Energy Products," Energies, MDPI, vol. 16(9), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    2. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Banacloche, Santacruz & Cadarso, Maria Angeles & Monsalve, Fabio & Lechon, Yolanda, 2020. "Assessment of the sustainability of Mexico green investments in the road to Paris," Energy Policy, Elsevier, vol. 141(C).
    4. Dell’Anna, Federico, 2021. "Green jobs and energy efficiency as strategies for economic growth and the reduction of environmental impacts," Energy Policy, Elsevier, vol. 149(C).
    5. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    6. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.
    7. Yuan, Rong & Rodrigues, João F.D. & Tukker, Arnold & Behrens, Paul, 2018. "The impact of the expansion in non-fossil electricity infrastructure on China’s carbon emissions," Applied Energy, Elsevier, vol. 228(C), pages 1994-2008.
    8. Gulmira Azretbergenova & Beybit Syzdykov & Talgat Niyazov & Turysbekova Gulzhan & Nazira Yskak, 2021. "The Relationship between Renewable Energy Production and Employment in European Union Countries: Panel Data Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 20-26.
    9. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    10. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2017. "Comparative analysis of direct employment generated by renewable and non-renewable power plants," Energy, Elsevier, vol. 139(C), pages 542-554.
    11. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    12. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-37, January.
    13. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    16. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    17. Banacloche, Santacruz & Gamarra, Ana R. & Lechon, Yolanda & Bustreo, Chiara, 2020. "Socioeconomic and environmental impacts of bringing the sun to earth: A sustainability analysis of a fusion power plant deployment," Energy, Elsevier, vol. 209(C).
    18. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Nijs, Wouter & Politis, Savvas, 2020. "Analysing the influence of trade, technology learning and policy on the employment prospects of wind and solar energy deployment: The EU case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    19. Zafrilla, Jorge-Enrique & Arce, Guadalupe & Cadarso, María-Ángeles & Córcoles, Carmen & Gómez, Nuria & López, Luis-Antonio & Monsalve, Fabio & Tobarra, María-Ángeles, 2019. "Triple bottom line analysis of the Spanish solar photovoltaic sector: A footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.