IDEAS home Printed from https://ideas.repec.org/p/ekd/002625/2791.html
   My bibliography  Save this paper

Green Jobs? Economic impacts of renewable energy in Germany

Author

Listed:
  • Ulrike Lehr
  • Ulrike Lehr
  • Christian Lutz

Abstract

The positive impacts of an increasing share of renewable energy (RE) on the mitigation of climate change as well as on the decrease of the dependence of energy imports are indisputable. However, such are currently still the additional costs of heat and electricity generation from most renewable energy sources (RES). For a stable economic development, the overall balance of positive and negative effects under different possible future development pathways of fossil fuel prices, global climate policies and global trade is of interest. To account for all effects in a consistent framework, a macroeconometric model is employed. Economic development is measured via the comparison of economic indicators such as GDP and employment from different simulation runs. Overall net positive effects can be seen for instance as higher employment in one simulation run compared with the other. The environmental macroeconometric model PANTA RHEI is at the core of our methodological approach. PANTA RHEI is an environmentally extended version of the macro-econometric simulation and forecasting model INFORGE. It is based on official statistics and consistently describes inter-industry flows between 59 sectors. It includes consumption, government, investment, construction, inventory and exports as well as prices, wages, labor compensation, profits, taxes, etc. on the sectoral and macroeconomic level. The behavioral equations reflect bounded rationality rather than optimizing behavior of agents. All parameters are estimated econometrically from time series data (1991 – 2008). Producer prices are the result of mark-up calculations of firms. Output decisions follow observable historic developments, including observed inefficiencies rather than optimal choices. The energy module captures the dependence between economic development, energy input and CO2 emissions. It contains the full energy balance with primary energy input, transformation and final energy consumption for 20 energy consumption sectors, 27 fossil energy carriers and the satellite balance for renewable energy. The energy module is fully integrated into the economic part of the model. To examine the economic effects of increasing shares of renewable energy in Germany our analysis applies PANTA RHEI to a set of scenarios and compares the resulting economic quantities. The economic impact of an activity such as the expansion of renewable energy is assessed by comparing a simulation without the activity or economic policy measure with a simulation that includes the activity. A zero-RE scenario based on a low price path is compared to a development with differing degrees of domestic investment in RE and differing export trends based on the same price path. The comparison of simulation results shows macroeconomic effects such as net employment effects which can be traced back to the different scenario assumptions. The increase of renewable energy leads in most of the scenarios studied to positive net employment, rising steadily, particularly from 2020 onwards. The net effects are negative in the scenarios with minimal exports (i.e. remaining constant at today’s level), although this should be seen here more as a notional lower limit. In this case, for two expansion paths lower values for employment are observed by comparison with the zero scenario. However, at the end of the observation period there is a reversal in these cases: net employment effects become slightly positive or are neutral. The influence of exports on the domestic employment level also becomes very evident in the scenarios studied: using the optimistic expectations, the positive net employment effect rises by 2030 to values in excess of 150,000. Sensitivity analysis and critical discussion of these results is provided in the full paper.

Suggested Citation

  • Ulrike Lehr & Ulrike Lehr & Christian Lutz, 2011. "Green Jobs? Economic impacts of renewable energy in Germany," EcoMod2011 2791, EcoMod.
  • Handle: RePEc:ekd:002625:2791
    as

    Download full text from publisher

    File URL: http://ecomod.net/system/files/Lehr_Lutz_Ecomod%202011_0.doc
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    2. Blazejczak, Jürgen & Braun, Frauke G. & Edler, Dietmar & Schill, Wolf-Peter, 2014. "Economic effects of renewable energy expansion: A model-based analysis for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1070-1080.
    3. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    4. Fang, Yiping, 2011. "Economic welfare impacts from renewable energy consumption: The China experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5120-5128.
    5. Lutz, Christian & Meyer, Bernd & Nathani, Carsten & Schleich, Joachim, 2005. "Endogenous technological change and emissions: the case of the German steel industry," Energy Policy, Elsevier, vol. 33(9), pages 1143-1154, June.
    6. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    7. Lehr, Ulrike & Nitsch, Joachim & Kratzat, Marlene & Lutz, Christian & Edler, Dietmar, 2008. "Renewable energy and employment in Germany," Energy Policy, Elsevier, vol. 36(1), pages 108-117, January.
    8. Stocker, Andrea & Großmann, Anett & Madlener, Reinhard & Wolter, Marc Ingo, 2011. "Sustainable energy development in Austria until 2020: Insights from applying the integrated model "e3.at"," Energy Policy, Elsevier, vol. 39(10), pages 6082-6099, October.
    9. Hillebrand, Bernhard & Buttermann, Hans Georg & Behringer, Jean Marc & Bleuel, Michaela, 2006. "The expansion of renewable energies and employment effects in Germany," Energy Policy, Elsevier, vol. 34(18), pages 3484-3494, December.
    10. Apergis, Nicholas & Payne, James E., 2010. "Coal consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(3), pages 1353-1359, March.
    11. Nagl, Stephan & Fürsch, Michaela & Paulus, Moritz & Richter, Jan & Trüby, Johannes & Lindenberger, Dietmar, 2011. "Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050," Utilities Policy, Elsevier, vol. 19(3), pages 185-192.
    12. Bernd Meyer & Mark Meyer & Martin Distelkamp, 2012. "Modeling green growth and resource efficiency: new results," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(2), pages 145-154, June.
    13. Wei, Max & Patadia, Shana & Kammen, Daniel M., 2010. "Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?," Energy Policy, Elsevier, vol. 38(2), pages 919-931, February.
    14. Çetin, Müjgan & Eğrican, Nilüfer, 2011. "Employment impacts of solar energy in Turkey," Energy Policy, Elsevier, vol. 39(11), pages 7184-7190.
    15. Jacobsson, Staffan & Bergek, Anna & Finon, Dominique & Lauber, Volkmar & Mitchell, Catherine & Toke, David & Verbruggen, Aviel, 2009. "EU renewable energy support policy: Faith or facts?," Energy Policy, Elsevier, vol. 37(6), pages 2143-2146, June.
    16. Bernd Meyer & Christian Lutz & Peter Schnur & Gerd Zika, 2007. "National Economic Policy Simulations with Global Interdependencies: A Sensitivity Analysis for Germany," Economic Systems Research, Taylor & Francis Journals, vol. 19(1), pages 37-55.
    17. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    18. Nick Johnstone & Ivan Haščič & Margarita Kalamova, 2010. "Environmental Policy Design Characteristics and Technological Innovation: Evidence from Patent Data," OECD Environment Working Papers 16, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    2. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    3. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.
    4. Paul Welfens & Christian Lutz, 2012. "Green ICT dynamics: key issues and findings for Germany," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(2), pages 155-163, June.
    5. Veli Yılancı & Emel İslamoğlu & Sinem Yıldırımalp & Gökçe Candan, 2020. "The Relationship between Unemployment Rates and Renewable Energy Consumption: Evidence from Fourier ADL Cointegration Test," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 17-28, June.
    6. Aldieri, Luigi & Grafström, Jonas & Paolo Vinci, Concetto, 2020. "Job Creation in the Wind Power Sector Through Marshallian and Jacobian Knowledge Spillovers," Ratio Working Papers 340, The Ratio Institute.
    7. Nadia Singh & Richard Nyuur & Ben Richmond, 2019. "Renewable Energy Development as a Driver of Economic Growth: Evidence from Multivariate Panel Data Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    8. Duscha, Vicki & Fougeyrollas, Arnaud & Nathani, Carsten & Pfaff, Matthias & Ragwitz, Mario & Resch, Gustav & Schade, Wolfgang & Breitschopf, Barbara & Walz, Rainer, 2016. "Renewable energy deployment in Europe up to 2030 and the aim of a triple dividend," Energy Policy, Elsevier, vol. 95(C), pages 314-323.
    9. Damien Bazin & Emna Omri & Nouri Chtourou, 2015. "Solar Thermal Energy for Sustainable Development in Tunisia," Post-Print halshs-01070616, HAL.
    10. Arouri, Mohamed El Hedi & Ben Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2014. "Exploring the Causality Links between Energy and Employment in African Countries," IZA Discussion Papers 8296, Institute of Labor Economics (IZA).
    11. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    12. Fanning, Tim & Jones, Calvin & Munday, Max, 2014. "The regional employment returns from wave and tidal energy: A Welsh analysis," Energy, Elsevier, vol. 76(C), pages 958-966.
    13. Yushchenko, Alisa & Patel, Martin Kumar, 2016. "Contributing to a green energy economy? A macroeconomic analysis of an energy efficiency program operated by a Swiss utility," Applied Energy, Elsevier, vol. 179(C), pages 1304-1320.
    14. repec:ipg:wpaper:2014-475 is not listed on IDEAS
    15. Cameron, Lachlan & van der Zwaan, Bob, 2015. "Employment factors for wind and solar energy technologies: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 160-172.
    16. Berk, Istemi & Yetkiner, Hakan, 2014. "Energy prices and economic growth in the long run: Theory and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 228-235.
    17. Sooriyaarachchi, Thilanka M. & Tsai, I-Tsung & El Khatib, Sameh & Farid, Amro M. & Mezher, Toufic, 2015. "Job creation potentials and skill requirements in, PV, CSP, wind, water-to-energy and energy efficiency value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 653-668.
    18. Omri, Emna & Chtourou, Nouri & Bazin, Damien, 2015. "Solar thermal energy for sustainable development in Tunisia: The case of the PROSOL project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1312-1323.
    19. Inglesi-Lotz, Roula, 2016. "The impact of renewable energy consumption to economic growth: A panel data application," Energy Economics, Elsevier, vol. 53(C), pages 58-63.
    20. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:002625:2791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.