IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v19y2011i3p185-192.html
   My bibliography  Save this article

Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050

Author

Listed:
  • Nagl, Stephan
  • Fürsch, Michaela
  • Paulus, Moritz
  • Richter, Jan
  • Trüby, Johannes
  • Lindenberger, Dietmar

Abstract

In this article we demonstrate how challenging greenhouse gas reduction targets of up to 95% until 2050 can be achieved in the German electricity sector. In the analysis, we focus on the main requirements to reach such challenging targets. To account for interdependencies between the electricity market and the rest of the economy, different models were used to account for feedback loops with all other sectors. We include scenarios with different runtimes and retrofit costs for existing nuclear plants to determine the effects of a prolongation of nuclear power plants in Germany. Key findings for the electricity sector include the importance of a European-wide coordinated electricity grid extension and the exploitation of regional comparative cost effects for renewable sites. Due to political restrictions, nuclear energy will not be available in Germany in 2050. However, the nuclear life-time extension has a positive impact on end consumer electricity prices as well as economic growth in the medium term, if retrofit costs do not exceed certain limits.

Suggested Citation

  • Nagl, Stephan & Fürsch, Michaela & Paulus, Moritz & Richter, Jan & Trüby, Johannes & Lindenberger, Dietmar, 2011. "Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050," Utilities Policy, Elsevier, vol. 19(3), pages 185-192.
  • Handle: RePEc:eee:juipol:v:19:y:2011:i:3:p:185-192
    DOI: 10.1016/j.jup.2011.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178711000324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2011.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreno, R. & Barroso, L.A. & Rudnick, H. & Mocarquer, S. & Bezerra, B., 2010. "Auction approaches of long-term contracts to ensure generation investment in electricity markets: Lessons from the Brazilian and Chilean experiences," Energy Policy, Elsevier, vol. 38(10), pages 5758-5769, October.
    2. Dominique Finon & Virginie Pignon, 2008. "Electricity and long-term capacity adequacy: The quest for regulatory mechanism compatible with electricity market," Post-Print hal-00716312, HAL.
    3. Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2011. "The development of the German energy market until 2030--A critical survey of selected scenarios," Energy Policy, Elsevier, vol. 39(2), pages 812-825, February.
    4. Finon, Dominique & Pignon, Virginie, 2008. "Electricity and long-term capacity adequacy: The quest for regulatory mechanism compatible with electricity market," Utilities Policy, Elsevier, vol. 16(3), pages 143-158, September.
    5. Erdmenger, Christoph & Lehmann, Harry & Müschen, Klaus & Tambke, Jens & Mayr, Sebastian & Kuhnhenn, Kai, 2009. "A climate protection strategy for Germany--40% reduction of CO2 emissions by 2020 compared to 1990," Energy Policy, Elsevier, vol. 37(1), pages 158-165, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Fung-Fei & Chou, Seng-Cho & Lu, Tai-Ken, 2013. "Scenario analysis of the new energy policy for Taiwan's electricity sector until 2025," Energy Policy, Elsevier, vol. 61(C), pages 162-171.
    2. Dominique Finon & Fabien Roques, 2013. "European Electricity Market Reforms: The "Visible Hand" of Public Coordination," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    3. Boute, Anatole, 2012. "Promoting renewable energy through capacity markets: An analysis of the Russian support scheme," Energy Policy, Elsevier, vol. 46(C), pages 68-77.
    4. Heidarizadeh, Mohammad & Ahmadian, Mohammad, 2019. "Capacity certificate mechanism: A step forward toward a market based generation capacity incentive," Energy, Elsevier, vol. 172(C), pages 45-56.
    5. Roques, Fabien & Finon, Dominique, 2017. "Adapting electricity markets to decarbonisation and security of supply objectives: Toward a hybrid regime?," Energy Policy, Elsevier, vol. 105(C), pages 584-596.
    6. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    7. Sakellaris, Kostis, 2009. "The Greek Capacity Adequacy Mechanism: Design, Incentives, Strategic Behavior and Regulatory Remedies," MPRA Paper 24642, University Library of Munich, Germany.
    8. Elberg, Christina, 2014. "Cross-Border Effects of Capacity Mechanisms in Electricity Markets," EWI Working Papers 2014-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    9. Juha Teirilä and Robert A. Ritz, 2019. "Strategic Behaviour in a Capacity Market? The New Irish Electricity Market Design," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    10. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    11. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    12. Mastropietro, Paolo & Rodilla, Pablo & Rivier, Michel & Batlle, Carlos, 2024. "Reliability options: Regulatory recommendations for the next generation of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 185(C).
    13. Foley, A.M. & Ó Gallachóir, B.P. & McKeogh, E.J. & Milborrow, D. & Leahy, P.G., 2013. "Addressing the technical and market challenges to high wind power integration in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 692-703.
    14. Sandsmark, Maria, 2009. "A regional energy paradox--the case of Central Norway," Energy Policy, Elsevier, vol. 37(11), pages 4549-4556, November.
    15. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    16. Elberg, Christina & Kranz, Sebastian, 2013. "Capacity Mechanisms and Effects on Market Structure," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79811, Verein für Socialpolitik / German Economic Association.
    17. Cepeda, Mauricio & Saguan, Marcelo & Finon, Dominique & Pignon, Virginie, 2009. "Generation adequacy and transmission interconnection in regional electricity markets," Energy Policy, Elsevier, vol. 37(12), pages 5612-5622, December.
    18. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    19. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    20. Becker, Sophia & Schober, Dominik & Wassermann, Sandra, 2016. "How to approach consumers’ nonmonetary evaluation of electricity supply security? The case of Germany from a multidisciplinary perspective," Utilities Policy, Elsevier, vol. 42(C), pages 74-84.

    More about this item

    Keywords

    Roadmap 2050; GHG reduction; Renewable energies; Carbon capture and storage; Power plant fleet optimization;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:19:y:2011:i:3:p:185-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.