IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v16y2016isup1ps7-s26.html
   My bibliography  Save this article

The need for national deep decarbonization pathways for effective climate policy

Author

Listed:
  • Chris Bataille
  • Henri Waisman
  • Michel Colombier
  • Laura Segafredo
  • Jim Williams
  • Frank Jotzo

Abstract

Constraining global average temperatures to 2 °C above pre-industrial levels will probably require global energy system emissions to be halved by 2050 and complete decarbonization by 2100. In the nationally orientated climate policy framework codified under the Paris Agreement, each nation must decide the scale and method of their emissions reduction contribution while remaining consistent with the global carbon budget. This policy process will require engagement amongst a wide range of stakeholders who have very different visions for the physical implementation of deep decarbonization. The Deep Decarbonization Pathways Project (DDPP) has developed a methodology, building on the energy, climate and economics literature, to structure these debates based on the following principles: country-scale analysis to capture specific physical, economic and political circumstances to maximize policy relevance, a long-term perspective to harmonize short-term decisions with the long-term objective and detailed sectoral analysis with transparent representation of emissions drivers through a common accounting framework or ‘dashboard’. These principles are operationalized in the creation of deep decarbonization pathways (DDPs), which involve technically detailed, sector-by-sector maps of each country’s decarbonization transition, backcasting feasible pathways from 2050 end points. This article shows how the sixteen DDPP country teams, covering 74% of global energy system emissions, used this method to collectively restrain emissions to a level consistent with the 2 °C target while maintaining development aspirations and reflecting national circumstances, mainly through efficiency, decarbonization of energy carriers (e.g. electricity, hydrogen, biofuels and synthetic gas) and switching to these carriers. The cross-cutting analysis of country scenarios reveals important enabling conditions for the transformation, pertaining to technology research and development, investment, trade and global and national policies. Policy relevance In the nation-focused global climate policy framework codified in the Paris Agreement, the purpose of the DDPP and DDPs is to provide a common method by which global and national governments, business, civil society and researchers in each country can communicate, compare and debate differing concrete visions for deep decarbonization in order to underpin the necessary societal and political consensus to design and implement short-term policy packages that are consistent with long-term global decarbonization.

Suggested Citation

  • Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
  • Handle: RePEc:taf:tcpoxx:v:16:y:2016:i:sup1:p:s7-s26
    DOI: 10.1080/14693062.2016.1173005
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2016.1173005
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    2. Mundaca T., Luis & Markandya, Anil & Nørgaard, Jørgen, 2013. "Walking away from a low-carbon economy? Recent and historical trends using a regional decomposition analysis," Energy Policy, Elsevier, vol. 61(C), pages 1471-1480.
    3. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    4. Griffin, James M, 1977. "The Econometrics of Joint Production: Another Approach," The Review of Economics and Statistics, MIT Press, vol. 59(4), pages 389-397, November.
    5. Marcel Kok & Bert Metz & Jan Verhagen & Sascha Van Rooijen, 2008. "Integrating development and climate policies: national and international benefits," Climate Policy, Taylor & Francis Journals, vol. 8(2), pages 103-118, March.
    6. Steve Pye & Christophe McGlade & Chris Bataille & Gabrial Anandarajah & Amandine Denis-Ryan & Vladimir Potashnikov, 2016. "Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 92-109, June.
    7. Chateau, Bertrand & Lapillonne, Bruno, 1990. "2.4. Accounting and end-use models," Energy, Elsevier, vol. 15(3), pages 261-278.
    8. Adil Najam & Saleemul Huq & Youba Sokona, 2003. "Climate negotiations beyond Kyoto: developing countries concerns and interests," Climate Policy, Taylor & Francis Journals, vol. 3(3), pages 221-231, September.
    9. P. R. Shukla & Subash Dhar & Diptiranjan Mahapatra, 2008. "Low-carbon society scenarios for India," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 156-176, December.
    10. Rivers, Nic & Jaccard, Mark, 2006. "Useful models for simulating policies to induce technological change," Energy Policy, Elsevier, vol. 34(15), pages 2038-2047, October.
    11. Harald Winkler & Anya Boyd & Marta Torres Gunfaus & Stefan Raubenheimer, 2015. "Reconsidering development by reflecting on climate change," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 15(4), pages 369-385, November.
    12. Chris Bataille & Nic Rivers & Paulus Mau & Chris Joseph & Jian-Jun Tu, 2007. "How Malleable are the Greenhouse Gas Emission Intensities of the G7 Nations?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 145-170.
    13. Mathy, Sandrine & Fink, Meike & Bibas, Ruben, 2015. "Rethinking the role of scenarios: Participatory scripting of low-carbon scenarios for France," Energy Policy, Elsevier, vol. 77(C), pages 176-190.
    14. Laitner, J. A. & DeCanio, S. J. & Koomey, J. G. & Sanstad, A. H., 2003. "Room for improvement: increasing the value of energy modeling for policy analysis," Utilities Policy, Elsevier, vol. 11(2), pages 87-94, June.
    15. Bert Metz & Marcel Kok, 2008. "Integrating development and climate policies," Climate Policy, Taylor & Francis Journals, vol. 8(2), pages 99-102, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:enepol:v:110:y:2017:i:c:p:509-517 is not listed on IDEAS
    2. repec:eee:appene:v:225:y:2018:i:c:p:884-901 is not listed on IDEAS
    3. Adrien Vogt-Schilb & Stephane Hallegatte, 2017. "Climate Policies and Nationally Determined Contributions: Reconciling the Needed Ambition with the Political Economy," IDB Publications (Working Papers) 8319, Inter-American Development Bank.
    4. repec:eee:enepol:v:113:y:2018:i:c:p:651-662 is not listed on IDEAS
    5. Spencer, Thomas & Pierfederici, Roberta & Sartor, Oliver & Berghmans, Nicolas & Samadi, Sascha & Fischedick, Manfred & Knoop, Katharina & Pye, Steve & Criqui, Patrick & Mathy, Sandrine & Capros, Pante, 2017. "Tracking sectoral progress in the deep decarbonisation of energy systems in Europe," Energy Policy, Elsevier, vol. 110(C), pages 509-517.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:16:y:2016:i:sup1:p:s7-s26. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.