IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v162y2011i2p149-169.html
   My bibliography  Save this item

Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
  2. Francis X. Diebold & Georg Strasser, 2013. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1304-1337.
  3. Ilze Kalnina & Natalia Sizova, 2015. "Estimation of volatility measures using high frequency data (in Russian)," Quantile, Quantile, issue 13, pages 3-14, May.
  4. Potiron, Yoann & Mykland, Per A., 2017. "Estimation of integrated quadratic covariation with endogenous sampling times," Journal of Econometrics, Elsevier, vol. 197(1), pages 20-41.
  5. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
  6. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
  7. Degiannakis, Stavros & Floros, Christos, 2016. "Intra-day realized volatility for European and USA stock indices," Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
  8. Asai Manabu & So Mike K.P., 2015. "Long Memory and Asymmetry for Matrix-Exponential Dynamic Correlation Processes," Journal of Time Series Econometrics, De Gruyter, vol. 7(1), pages 69-94, January.
  9. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient Under Round-off Errors, Micro-market Price Adjustments and Random Sampling," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 333-368, September.
  10. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
  11. Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.
  12. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
  13. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
  14. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
  15. Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
  16. Gustavo F. Dias & Marcelo Fernandes & Cristina M. Scherrer, 2021. "Price Discovery in a Continuous-Time Setting [Price Discovery and Common Factor Models]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 985-1008.
  17. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  18. Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2013. "On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 59-84.
  19. Jacod, Jean & Li, Yingying & Zheng, Xinghua, 2019. "Estimating the integrated volatility with tick observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 80-100.
  20. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
  21. Yao Axel Ehouman, 2019. "Volatility transmission between oil prices and banks stock prices as a new source of instability: Lessons from the US Experience," Working Papers hal-04141868, HAL.
  22. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
  23. Lidan Grossmass, 2014. "Obtaining and Predicting the Bounds of Realized Correlations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(III), pages 191-226, September.
  24. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty: Adaptive Mixing of High- and Low-Frequency Information," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168222, Verein für Socialpolitik / German Economic Association.
  25. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
  26. Kim, Donggyu & Kong, Xin-Bing & Li, Cui-Xia & Wang, Yazhen, 2018. "Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 203(1), pages 69-79.
  27. Yeh, Jin-Huei & Wang, Jying-Nan, 2010. "Correcting microstructure comovement biases for integrated covariance," Finance Research Letters, Elsevier, vol. 7(3), pages 184-191, September.
  28. Santos, André A.P. & Nogales, Francisco J. & Ruiz, Esther & Dijk, Dick Van, 2012. "Optimal portfolios with minimum capital requirements," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1928-1942.
  29. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
  30. Maria Elvira Mancino & Simona Sanfelici, 2011. "Covariance Estimation and Dynamic Asset-Allocation under Microstructure Effects via Fourier Methodology," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures, chapter 1, pages 3-32, Palgrave Macmillan.
  31. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
  32. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
  33. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
  34. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
  35. Chaker, Selma, 2019. "The signal and the noise volatilities," Research in International Business and Finance, Elsevier, vol. 50(C), pages 79-105.
  36. Marius Matei & Xari Rovira & Núria Agell, 2019. "Bivariate Volatility Modeling with High-Frequency Data," Econometrics, MDPI, vol. 7(3), pages 1-15, September.
  37. Adrian Baldwin & Iffat Gheyas & Christos Ioannidis & David Pym & Julian Williams, 2017. "Contagion in cyber security attacks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 780-791, July.
  38. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Papers 2012-W04, Economics Group, Nuffield College, University of Oxford.
  39. Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
  40. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," OFRC Working Papers Series 2008fe25, Oxford Financial Research Centre.
  41. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Jun 2024.
  42. Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022. "Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  43. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2017. "Copula–Based vMEM Specifications versus Alternatives: The Case of Trading Activity," Econometrics, MDPI, vol. 5(2), pages 1-24, April.
  44. Fabrizio Cipollini & Giampiero M Gallo & Alessandro Palandri, 2020. "Realized Variance Modeling: Decoupling Forecasting from Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 532-555.
  45. Peter Reinhard Hansen & Zhuo Huang, 2016. "Exponential GARCH Modeling With Realized Measures of Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
  46. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers CORE 2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  47. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
  48. Yuta Kurose & Yasuhiro Omori, "undated". "Multiple-lock Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1075, CIRJE, Faculty of Economics, University of Tokyo.
  49. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
  50. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
  51. Jianqing Fan & Yingying Li & Ke Yu, 2012. "Vast Volatility Matrix Estimation Using High-Frequency Data for Portfolio Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 412-428, March.
  52. Altmeyer, Randolf & Bibinger, Markus, 2014. "Functional stable limit theorems for efficient spectral covolatility estimators," SFB 649 Discussion Papers 2014-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  53. Peter Reinhard Hansen & Chen Tong, 2024. "Convolution-t Distributions," Papers 2404.00864, arXiv.org.
  54. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
  55. Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2013. "Risk spillovers in international equity portfolios," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 121-137.
  56. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
  57. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
  58. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
  59. Usman Arief & Zaäfri Ananto Husodo, 2021. "Private Information from Extreme Price Movements (Empirical Evidences from Southeast Asia Countries)," International Symposia in Economic Theory and Econometrics, in: Recent Developments in Asian Economics International Symposia in Economic Theory and Econometrics, volume 28, pages 221-242, Emerald Group Publishing Limited.
  60. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
  61. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
  62. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
  63. Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
  64. Rui Pedro Brito & Helder Sebastião & Pedro Godinho, 2018. "On the Gains of Using High Frequency Data in Portfolio Selection," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 65(4), pages 365-383, December.
  65. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
  66. Christensen, Kim & Christiansen, Charlotte & Posselt, Anders M., 2020. "The economic value of VIX ETPs," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 121-138.
  67. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
  68. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
  69. Bollerslev, Tim & Medeiros, Marcelo C. & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "From zero to hero: Realized partial (co)variances," Journal of Econometrics, Elsevier, vol. 231(2), pages 348-360.
  70. Bastian Gribisch, 2018. "A latent dynamic factor approach to forecasting multivariate stock market volatility," Empirical Economics, Springer, vol. 55(2), pages 621-651, September.
  71. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
  72. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
  73. Connor, Gregory & Suurlaht, Anita, 2013. "Dynamic stock market covariances in the Eurozone," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 353-370.
  74. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
  75. Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
  76. Li, Dan & Drovandi, Christopher & Clements, Adam, 2024. "Outlier-robust methods for forecasting realized covariance matrices," International Journal of Forecasting, Elsevier, vol. 40(1), pages 392-408.
  77. Maria Elvira Mancino & Simona Sanfelici, 2012. "Estimation of quarticity with high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 607-622, December.
  78. Gustavo Fruet Dias & Cristina M. Scherrer & Fotis Papailias, 2016. "Volatility Discovery," CREATES Research Papers 2016-07, Department of Economics and Business Economics, Aarhus University.
  79. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
  80. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
  81. Štefan Lyócsa & Peter Molnár, 2016. "Volatility forecasting of strategically linked commodity ETFs: gold-silver," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1809-1822, December.
  82. Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
  83. Stanislav Anatolyev & Nikita Kobotaev, 2018. "Modeling and forecasting realized covariance matrices with accounting for leverage," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 114-139, February.
  84. Lam, Clifford & Feng, Phoenix & Hu, Charlie, 2017. "Nonlinear shrinkage estimation of large integrated covariance matrices," LSE Research Online Documents on Economics 69812, London School of Economics and Political Science, LSE Library.
  85. Bauwens, Luc & Xu, Yongdeng, 2023. "The contribution of realized covariance models to the economic value of volatility timing," Cardiff Economics Working Papers E2023/20, Cardiff University, Cardiff Business School, Economics Section.
  86. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
  87. Nabil Bouamara & Kris Boudt & S'ebastien Laurent & Christopher J. Neely, 2023. "Sluggish news reactions: A combinatorial approach for synchronizing stock jumps," Papers 2309.15705, arXiv.org.
  88. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
  89. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
  90. Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
  91. Stefan Lyocsa & Peter Molnar & Igor Fedorko, 2016. "Forecasting Exchange Rate Volatility: The Case of the Czech Republic, Hungary and Poland," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(5), pages 453-475, October.
  92. Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
  93. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
  94. Luca Taschini & Matteo Bonato, 2016. "Comovement and the Financialization of Commodities," Working Papers 64, Economic Research Southern Africa.
  95. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
  96. Dovonon, Prosper & Gonçalves, Sílvia & Meddahi, Nour, 2013. "Bootstrapping realized multivariate volatility measures," Journal of Econometrics, Elsevier, vol. 172(1), pages 49-65.
  97. repec:hum:wpaper:sfb649dp2013-029 is not listed on IDEAS
  98. Wang, Kent & Liu, Junwei & Liu, Zhi, 2013. "Disentangling the effect of jumps on systematic risk using a new estimator of integrated co-volatility," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1777-1786.
  99. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.
  100. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
  101. Kirill Dragun & Kris Boudt & Orimar Sauri & Steven Vanduffel, 2021. "Beta-Adjusted Covariance Estimation," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1010, Ghent University, Faculty of Economics and Business Administration.
  102. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
  103. Francis X. Diebold & Georg H. Strasser, 2008. "On the Correlation Structure of Microstructure Noise in Theory and Practice," PIER Working Paper Archive 08-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  104. Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
  105. Masato Ubukata & Toshiaki Watanabe, 2014. "Market variance risk premiums in Japan for asset predictability," Empirical Economics, Springer, vol. 47(1), pages 169-198, August.
  106. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
  107. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
  108. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised May 2024.
  109. Boudt, Kris & Laurent, Sébastien & Lunde, Asger & Quaedvlieg, Rogier & Sauri, Orimar, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Journal of Econometrics, Elsevier, vol. 196(2), pages 347-367.
  110. Shirota, Shinichiro & Omori, Yasuhiro & F. Lopes, Hedibert. & Piao, Haixiang, 2017. "Cholesky realized stochastic volatility model," Econometrics and Statistics, Elsevier, vol. 3(C), pages 34-59.
  111. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
  112. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
  113. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
  114. Bibinger, Markus & Winkelmann, Lars, 2013. "Econometrics of co-jumps in high-frequency data with noise," SFB 649 Discussion Papers 2013-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  115. Ruijun Bu & Degui Li & Oliver Linton & Hanchao Wang, 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Working Papers 202212, University of Liverpool, Department of Economics.
  116. Yao Axel Ehouman, 2019. "Volatility transmission between oil prices and banks stock prices as a new source of instability: Lessons from the US Experience," EconomiX Working Papers 2019-19, University of Paris Nanterre, EconomiX.
  117. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
  118. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
  119. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
  120. Giorgio Mirone, 2018. "Cross-sectional noise reduction and more efficient estimation of Integrated Variance," CREATES Research Papers 2018-18, Department of Economics and Business Economics, Aarhus University.
  121. Vortelinos, Dimitrios I., 2013. "Portfolio analysis of intraday covariance matrix in the Greek equity market," Research in International Business and Finance, Elsevier, vol. 27(1), pages 66-79.
  122. Peter Reinhard Hansen & Guillaume Horel & Asger Lunde & Ilya Archakov, 2015. "A Markov Chain Estimator of Multivariate Volatility from High Frequency Data," CREATES Research Papers 2015-19, Department of Economics and Business Economics, Aarhus University.
  123. Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
  124. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
  125. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
  126. Bibinger, Markus & Winkelmann, Lars, 2015. "Econometrics of co-jumps in high-frequency data with noise," Journal of Econometrics, Elsevier, vol. 184(2), pages 361-378.
  127. Bu, R. & Li, D. & Linton, O. & Wang, H., 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Cambridge Working Papers in Economics 2218, Faculty of Economics, University of Cambridge.
  128. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
  129. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
  130. Yoann Potiron & Per Mykland, 2020. "Local Parametric Estimation in High Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 679-692, July.
  131. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
  132. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
  133. Ehouman, Yao Axel, 2020. "Volatility transmission between oil prices and banks' stock prices as a new source of instability: Lessons from the United States experience," Economic Modelling, Elsevier, vol. 91(C), pages 198-217.
  134. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," LSE Research Online Documents on Economics 88375, London School of Economics and Political Science, LSE Library.
  135. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
  136. Fabrizio Cipollini & Giampiero M. Gallo & Alessandro Palandri, 2020. "A dynamic conditional approach to portfolio weights forecasting," Papers 2004.12400, arXiv.org.
  137. Sanfelici Simona & Uboldi Adamo, 2014. "Assessing the quality of volatility estimators via option pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(2), pages 103-124, April.
  138. Michela Verardo & Andrew Patton, 2009. "Does Beta Move with News? Systematic Risk and Firm-Specific Information Flows," FMG Discussion Papers dp630, Financial Markets Group.
  139. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
  140. Roxana Halbleib & Valerie Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Papers ECARES ECARES 2011-002, ULB -- Universite Libre de Bruxelles.
  141. Liu, Cheng & Tang, Cheng Yong, 2014. "A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data," Journal of Econometrics, Elsevier, vol. 180(2), pages 217-232.
  142. Masato Ubukata, 2022. "A time-varying jump tail risk measure using high-frequency options data," Empirical Economics, Springer, vol. 63(5), pages 2633-2653, November.
  143. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
  144. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Portfolio Choice with High Frequency Data: CRRA Preferences and the Liquidity Effect," GEMF Working Papers 2016-13, GEMF, Faculty of Economics, University of Coimbra.
  145. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
  146. Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2013. "Estimating the quadratic covariation matrix from noisy observations: Local method of moments and efficiency," SFB 649 Discussion Papers 2013-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  147. Pelger, Markus, 2019. "Large-dimensional factor modeling based on high-frequency observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 23-42.
  148. Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
  149. Torben G. Andersen & Martin Thyrsgaard & Viktor Todorov, 2021. "Recalcitrant betas: Intraday variation in the cross‐sectional dispersion of systematic risk," Quantitative Economics, Econometric Society, vol. 12(2), pages 647-682, May.
  150. BenSaïda, Ahmed, 2019. "Good and bad volatility spillovers: An asymmetric connectedness," Journal of Financial Markets, Elsevier, vol. 43(C), pages 78-95.
  151. Lam, Clifford & Feng, Phoenix, 2018. "A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data," Journal of Econometrics, Elsevier, vol. 206(1), pages 226-257.
  152. Robert F. Engle & Martin Klint Hansen & Asger Lunde, 2012. "And Now, The Rest of the News: Volatility and Firm Specific News Arrival," CREATES Research Papers 2012-56, Department of Economics and Business Economics, Aarhus University.
  153. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
  154. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
  155. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
  156. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
  157. Liu, Cheng & Wang, Moming & Xia, Ningning, 2022. "Design-free estimation of integrated covariance matrices for high-frequency data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  158. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
  159. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  160. Manabu Asai & Mike K. P. So, 2021. "Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 271-294, May.
  161. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
  162. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2013. "Conditional alphas and realized betas," Textos para discussão 341, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
  163. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
  164. Xin-Bing Kong, 2013. "A direct approach to risk approximation for vast portfolios under gross-exposure constraint using high-frequency data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 647-669, November.
  165. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
  166. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
  167. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
  168. Yu‐Sheng Lai, 2019. "Flexible covariance dynamics, high‐frequency data, and optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1529-1548, December.
  169. Shen, Keren & Yao, Jianfeng & Li, Wai Keung, 2019. "On a spiked model for large volatility matrix estimation from noisy high-frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 207-221.
  170. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
  171. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
  172. Ubukata, Masato, 2018. "Dynamic hedging performance and downside risk: Evidence from Nikkei index futures," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 270-281.
  173. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
  174. Ogihara, Teppei, 2021. "Misspecified diffusion models with high-frequency observations and an application to neural networks," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 245-292.
  175. Münnix, Michael C. & Schäfer, Rudi & Guhr, Thomas, 2010. "Compensating asynchrony effects in the calculation of financial correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 767-779.
  176. Gustavo Fruet Dias & Fotis Papailias & Cristina Scherrer, 2024. "An Econometric Analysis of Volatility Discovery," University of East Anglia School of Economics Working Paper Series 2024-01, School of Economics, University of East Anglia, Norwich, UK..
  177. Xinyu Song, 2019. "Large Volatility Matrix Prediction with High-Frequency Data," Papers 1907.01196, arXiv.org, revised Sep 2019.
  178. Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
  179. Yacine Aït-Sahalia & Dacheng Xiu, 2019. "Principal Component Analysis of High-Frequency Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 287-303, January.
  180. Zhi Liu, 2017. "Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations," Finance and Stochastics, Springer, vol. 21(2), pages 427-469, April.
  181. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
  182. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
  183. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.
  184. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
  185. Bibinger, Markus & Vetter, Mathias, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers 2013-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  186. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
  187. Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
  188. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
  189. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
  190. Yao Axel Ehouman, 2020. "Volatility transmission between oil prices and banks’ stock prices as a new source of instability: Lessons from the United States experience," Post-Print hal-02960571, HAL.
  191. Gu, Tiantian & Venkateswaran, Anand & Erath, Marc, 2023. "Impact of fiscal stimulus on volatility: A cross-country analysis," Research in International Business and Finance, Elsevier, vol. 65(C).
  192. Kevin Sheppard & Wen Xu, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
  193. Arnab Chakrabarti & Rituparna Sen, 2023. "Copula Estimation for Nonsynchronous Financial Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 116-149, May.
  194. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
  195. Michael C. Münnix & Rudi Schäfer & Thomas Guhr, 2011. "Statistical Causes For The Epps Effect In Microstructure Noise," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1231-1246.
  196. Cui, Wenhao & Hu, Jie & Wang, Jiandong, 2024. "Nonparametric estimation for high-frequency data incorporating trading information," Journal of Econometrics, Elsevier, vol. 240(1).
  197. Bibinger, Markus, 2011. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," SFB 649 Discussion Papers 2011-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  198. Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
  199. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
  200. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1024, CIRJE, Faculty of Economics, University of Tokyo.
  201. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2014. "Bootstrap Inference for Pre-averaged Realized Volatility based on Nonoverlapping Returns," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 679-707.
  202. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
  203. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
  204. Clifford Lam & Phoenix Feng & Charlie Hu, 2017. "Nonlinear shrinkage estimation of large integrated covariance matrices," Biometrika, Biometrika Trust, vol. 104(2), pages 481-488.
  205. Münnix, Michael C. & Schäfer, Rudi & Guhr, Thomas, 2010. "Impact of the tick-size on financial returns and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4828-4843.
  206. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.
  207. Serge Darolles & Christian Gouriéroux & Emmanuelle Jay, 2012. "Robust Portfolio Allocation with Systematic Risk Contribution Restrictions," Working Papers 2012-35, Center for Research in Economics and Statistics.
  208. Flavia Barsotti & Simona Sanfelici, 2012. "Microstructure effect on firm’s volatility risk," Working Papers - Mathematical Economics 2012-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  209. Flavia Barsotti & Simona Sanfelici, 2016. "Market Microstructure Effects on Firm Default Risk Evaluation," Econometrics, MDPI, vol. 4(3), pages 1-31, July.
  210. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
  211. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Round-off Errors, Micro-market Price Adjustments and Random Sampling," CIRJE F-Series CIRJE-F-965, CIRJE, Faculty of Economics, University of Tokyo.
  212. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
  213. repec:wyi:journl:002184 is not listed on IDEAS
  214. Bibinger, Markus & Reiß, Markus, 2011. "Spectral estimation of covolatility from noisy observations using local weights," SFB 649 Discussion Papers 2011-086, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  215. Michael Ho & Jack Xin, 2016. "Sparse Kalman Filtering Approaches to Covariance Estimation from High Frequency Data in the Presence of Jumps," Papers 1602.02185, arXiv.org, revised Apr 2016.
  216. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
  217. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
  218. Markus Bibinger & Markus Reiß, 2014. "Spectral Estimation of Covolatility from Noisy Observations Using Local Weights," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 23-50, March.
  219. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
  220. Kim, Donggyu & Wang, Yazhen, 2016. "Sparse PCA-based on high-dimensional Itô processes with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 172-189.
  221. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
  222. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
  223. Ogihara, Teppei & Yoshida, Nakahiro, 2014. "Quasi-likelihood analysis for nonsynchronously observed diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2954-3008.
  224. Shen, Yiwen & Shi, Meiqi, 2024. "Intraday variation in cross-sectional stock comovement and impact of index-based strategies," Journal of Financial Markets, Elsevier, vol. 68(C).
  225. Dimitrios I. Vortelinos, 2015. "The Effect of Macro News on Volatility and Jumps," Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 425-447, November.
  226. Asger Lunde & Kasper V. Olesen, 2014. "Modeling and Forecasting the Distribution of Energy Forward Returns - Evidence from the Nordic Power Exchange," CREATES Research Papers 2013-19, Department of Economics and Business Economics, Aarhus University.
  227. Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
  228. Chang, Jinyuan & Hu, Qiao & Liu, Cheng & Tang, Cheng Yong, 2024. "Optimal covariance matrix estimation for high-dimensional noise in high-frequency data," Journal of Econometrics, Elsevier, vol. 239(2).
  229. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
  230. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
  231. Sentana, Enrique, 2018. "Volatility, diversification and contagion," CEPR Discussion Papers 12824, C.E.P.R. Discussion Papers.
  232. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
  233. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
  234. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
  235. Giacomo Toscano & Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2021. "Volatility of volatility estimation: central limit theorems for the Fourier transform estimator and empirical study of the daily time series stylized facts," Papers 2112.14529, arXiv.org, revised Sep 2022.
  236. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
  237. Ingmar Nolte & Valeri Voev, 2011. "Least Squares Inference on Integrated Volatility and the Relationship Between Efficient Prices and Noise," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 94-108, April.
  238. Neil Shephard, 2020. "An estimator for predictive regression: reliable inference for financial economics," Papers 2008.06130, arXiv.org.
  239. Cipollini, Fabrizio & Gallo, Giampiero M. & Palandri, Alessandro, 2021. "A dynamic conditional approach to forecasting portfolio weights," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1111-1126.
  240. repec:hum:wpaper:sfb649dp2013-017 is not listed on IDEAS
  241. Donggyu Kim & Minseog Oh, 2024. "Dynamic Realized Minimum Variance Portfolio Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.
  242. Bandi, Federico M. & Pirino, Davide & Renò, Roberto, 2024. "Systematic staleness," Journal of Econometrics, Elsevier, vol. 238(1).
  243. Haugom, Erik & Lien, Gudbrand & Veka, Steinar & Westgaard, Sjur, 2014. "Covariance estimation using high-frequency data: Sensitivities of estimation methods," Economic Modelling, Elsevier, vol. 43(C), pages 416-425.
  244. Mike Buckle & Jing Chen & Julian Williams, 2014. "How Predictable Are Equity Covariance Matrices? Evidence from High‐Frequency Data for Four Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 542-557, November.
  245. Jalshayin Bhachech & Arnab Chakrabarti & Taisei Kaizoji & Anindya S. Chakrabarti, 2022. "Instability of networks: effects of sampling frequency and extreme fluctuations in financial data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-14, April.
  246. Cosmin Octavian Cepoi & Filip Mihai Toma, 2016. "Estimating Probability of Informed Trading on the Bucharest Stock Exchange," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(2), pages 140-160, April.
  247. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.
  248. Yu‐Sheng Lai, 2023. "Optimal futures hedging by using realized semicovariances: The information contained in signed high‐frequency returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(5), pages 677-701, May.
  249. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
  250. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  251. Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
  252. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
  253. Ole Martin & Mathias Vetter, 2019. "Laws of large numbers for Hayashi–Yoshida-type functionals," Finance and Stochastics, Springer, vol. 23(3), pages 451-500, July.
  254. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
  255. Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).
  256. Selma Chaker & Nour Meddahi, 2013. "Volatility Forecasting when the Noise Variance Is Time-Varying," Staff Working Papers 13-48, Bank of Canada.
  257. Boffelli, Simona & Urga, Giovanni, 2015. "Macroannouncements, bond auctions and rating actions in the European government bond spreads," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 148-173.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.