IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v30y2025i1p689-709.html
   My bibliography  Save this article

The implications of non‐synchronous trading in G‐7 financial markets

Author

Listed:
  • Dimitrios Dimitriou
  • Dimitris Kenourgios
  • Theodore Simos
  • Alexandros Tsioutsios

Abstract

We investigate the effects of non‐synchronous trading on volatility spillover for the G‐7 equity markets during the Eurozone sovereign debt crisis (ESDC) and the Covid‐19 pandemic crisis. For data synchronisation we utilise ΜΑ(1) adjusted return series to estimate the Baba‐Engle‐Kraft‐Kroner (BEKK) and the dynamic conditional correlation (DCC) models. We also consider the use of realised kernels as explanatory variables in the variance equation. In this set up, the contagion effects during crises periods are more perceptible, as the spikes are easier to interpret. We also check the robustness of our main results by applying, wavelet coherence analysis to G‐7 major equity indices with realised kernels, as well as local Gaussian correlations (LGC). Our findings suggest the empirical significance of the synchronisation effects for the US and the other G‐7 equity markets. We also conclude that realised kernels is an effective tool for mitigating non‐synchronous effects. These results underline the significance of quantifying the synchronisation effects in equity markets as well as international portfolio diversification strategies.

Suggested Citation

  • Dimitrios Dimitriou & Dimitris Kenourgios & Theodore Simos & Alexandros Tsioutsios, 2025. "The implications of non‐synchronous trading in G‐7 financial markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 689-709, January.
  • Handle: RePEc:wly:ijfiec:v:30:y:2025:i:1:p:689-709
    DOI: 10.1002/ijfe.2936
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2936
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    4. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 159-179, September.
    6. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    7. Berentsen, Geir Drage & Kleppe, Tore Selland & Tjøstheim, Dag Bjarne, 2014. "Introducing localgauss, an R Package for Estimating and Visualizing Local Gaussian Correlation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i12).
    8. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    9. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    10. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    11. Bampinas, Georgios & Panagiotidis, Theodore & Politsidis, Panagiotis N., 2023. "Sovereign bond and CDS market contagion: A story from the Eurozone crisis," Journal of International Money and Finance, Elsevier, vol. 137(C).
    12. João Martins, 2022. "Bond Yields Movement Similarities and Synchronization in the G7: A Time–Frequency Analysis," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 189-214, July.
    13. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    14. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    15. Mandler, Martin & Scharnagl, Michael, 2022. "Financial cycles across G7 economies: A view from wavelet analysis," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    17. Tjøstheim, Dag & Hufthammer, Karl Ove, 2013. "Local Gaussian correlation: A new measure of dependence," Journal of Econometrics, Elsevier, vol. 172(1), pages 33-48.
    18. Martens, Martin & Poon, Ser-Huang, 2001. "Returns synchronization and daily correlation dynamics between international stock markets," Journal of Banking & Finance, Elsevier, vol. 25(10), pages 1805-1827, October.
    19. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
    20. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    21. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    22. Quynh Nga Nguyen & Sofiane Aboura & Julien Chevallier & Lyuyuan Zhang & Bangzhu Zhu, 2020. "Local Gaussian correlations in financial and commodity markets," Post-Print halshs-04250247, HAL.
    23. Papageorgiou, Theofanis & Michaelides, Panayotis G. & Milios, John G., 2010. "Business cycles synchronization and clustering in Europe (1960-2009)," Journal of Economics and Business, Elsevier, vol. 62(5), pages 419-470, September.
    24. Elie Bouri & Rangan Gupta & Shixuan Wang, 2022. "Nonlinear contagion between stock and real estate markets: International evidence from a local Gaussian correlation approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2089-2109, April.
    25. Dimitriou, Dimitrios & Kenourgios, Dimitris & Simos, Theodore, 2020. "Are there any other safe haven assets? Evidence for “exotic” and alternative assets," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 614-628.
    26. Izzeldin, Marwan & Muradoğlu, Yaz Gülnur & Pappas, Vasileios & Sivaprasad, Sheeja, 2021. "The impact of Covid-19 on G7 stock markets volatility: Evidence from a ST-HAR model," International Review of Financial Analysis, Elsevier, vol. 74(C).
    27. repec:hal:journl:peer-00741630 is not listed on IDEAS
    28. Nguyen, Quynh Nga & Aboura, Sofiane & Chevallier, Julien & Zhang, Lyuyuan & Zhu, Bangzhu, 2020. "Local Gaussian correlations in financial and commodity markets," European Journal of Operational Research, Elsevier, vol. 285(1), pages 306-323.
    29. Liow, Kim Hiang, 2015. "Volatility spillover dynamics and relationship across G7 financial markets," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 328-365.
    30. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    31. Georgios Bampinas & Theodore Panagiotidis, 2017. "Oil and stock markets before and after financial crises: A local Gaussian correlation approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(12), pages 1179-1204, December.
    32. Jiawen Luo & Langnan Chen & Weiguo Zhang, 2019. "Covariance breakdowns and connectedness of crude oil futures markets with non-synchronous data," Applied Economics, Taylor & Francis Journals, vol. 51(5), pages 422-443, January.
    33. Peter Reinhard Hansen & Asger Lunde & Valeri Voev, 2014. "Realized Beta Garch: A Multivariate Garch Model With Realized Measures Of Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 774-799, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    2. Li, Dongxin & Zhang, Feipeng & Yuan, Di & Cai, Yuan, 2024. "Does COVID-19 impact the dependence between oil and stock markets? Evidence from RCEP countries," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 909-939.
    3. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
    4. Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
    5. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers CORE 2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    7. Yu‐Sheng Lai, 2022. "High‐frequency data and stock–bond investing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1623-1638, December.
    8. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    9. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    10. Afees A. Salisu & Kazeem Isah, 2017. "Modeling the spillovers between stock market and money market in Nigeria," Working Papers 023, Centre for Econometric and Allied Research, University of Ibadan.
    11. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
    12. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    13. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    14. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    15. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    16. Laura Capera Romero & Anne Opschoor, 2024. "Realized Variances vs. Correlations: Unlocking the Gains in Multivariate Volatility Forecasting," Tinbergen Institute Discussion Papers 24-059/III, Tinbergen Institute.
    17. Manabu Asai & Mike K. P. So, 2021. "Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 271-294, May.
    18. Nishimura, Yusaku & Sun, Bianxia, 2018. "The intraday volatility spillover index approach and an application in the Brexit vote," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 241-253.
    19. Degiannakis, Stavros & Floros, Christos, 2016. "Intra-day realized volatility for European and USA stock indices," Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
    20. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:30:y:2025:i:1:p:689-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.