IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading"

by Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Roxana Halbleib & Valerie Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Papers ECARES ECARES 2010-002, ULB -- Universite Libre de Bruxelles.
  2. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Papers 2012-W04, Economics Group, Nuffield College, University of Oxford.
  3. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics 14/10, University of Canterbury, Department of Economics and Finance.
  4. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
  5. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, School of Economics and Management, University of Aarhus.
  6. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
  7. Degiannakis, Stavros & Floros, Christos, 2014. "Intra-Day Realized Volatility for European and USA Stock Indices," MPRA Paper 64940, University Library of Munich, Germany, revised Jan 2015.
  8. Gregory Connor & Anita Suurlaht, 2012. "Dynamic Stock Market Covariances in the Eurozone," Economics, Finance and Accounting Department Working Paper Series n222-12.pdf, Department of Economics, Finance and Accounting, National University of Ireland - Maynooth.
  9. Francis X. Diebold & Georg H. Strasser, 2008. "On the Correlation Structure of Microstructure Noise in Theory and Practice," PIER Working Paper Archive 08-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  10. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
  11. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
  12. Haugom, Erik & Lien, Gudbrand & Veka, Steinar & Westgaard, Sjur, 2014. "Covariance estimation using high-frequency data: Sensitivities of estimation methods," Economic Modelling, Elsevier, vol. 43(C), pages 416-425.
  13. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
  14. Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2013. "Risk spillovers in international equity portfolios," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 121-137.
  15. Michael McAleer & Massimiliano Caporin, 2011. "Ranking Multivariate GARCH Models by Problem Dimension:An Empirical Evaluation," KIER Working Papers 778, Kyoto University, Institute of Economic Research.
  16. Xin-Bing Kong, 2013. "A direct approach to risk approximation for vast portfolios under gross-exposure constraint using high-frequency data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 22(4), pages 647-669, November.
  17. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
  18. Almut E. D. Veraart, 2010. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," CREATES Research Papers 2010-65, School of Economics and Management, University of Aarhus.
  19. Manabu Asai & Michael McAleer, 2015. "The Impact of Jumps and Leverage in Forecasting Co-Volatility," Tinbergen Institute Discussion Papers 15-018/III, Tinbergen Institute.
  20. Todorov, Viktor & Bollerslev, Tim, 2010. "Jumps and betas: A new framework for disentangling and estimating systematic risks," Journal of Econometrics, Elsevier, vol. 157(2), pages 220-235, August.
  21. Jianqing Fan & Yingying Li & Ke Yu, 2012. "Vast Volatility Matrix Estimation Using High-Frequency Data for Portfolio Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 412-428, March.
  22. Vortelinos, Dimitrios I., 2013. "Portfolio analysis of intraday covariance matrix in the Greek equity market," Research in International Business and Finance, Elsevier, vol. 27(1), pages 66-79.
  23. Francis X. Diebold & Georg Strasser, 2010. "On the Correlation Structure of Microstructure Noise: A Financial Economic Approach," NBER Working Papers 16469, National Bureau of Economic Research, Inc.
  24. Leonidas Tsiaras, 2010. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," CREATES Research Papers 2010-34, School of Economics and Management, University of Aarhus.
  25. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper Series 34_14, The Rimini Centre for Economic Analysis.
  26. Liu, Cheng & Tang, Cheng Yong, 2014. "A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data," Journal of Econometrics, Elsevier, vol. 180(2), pages 217-232.
  27. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, School of Economics and Management, University of Aarhus.
  28. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
  29. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2013. "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns," CREATES Research Papers 2013-07, School of Economics and Management, University of Aarhus.
  30. Matthias R. Fengler & Ostap Okhrin, 2012. "Realized Copula," SFB 649 Discussion Papers SFB649DP2012-034, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  31. Barunik, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2014. "Asymmetric connectedness of stocks: How does bad and good volatility spill over the U.S. stock market?," FinMaP-Working Papers 13, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
  32. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
  33. Ingmar Nolte & Valeri Voev, 2009. "Least Squares Inference on Integrated Volatility and the Relationship between Efficient Prices and Noise," CREATES Research Papers 2009-16, School of Economics and Management, University of Aarhus.
  34. Selma Chaker, 2013. "Volatility and Liquidity Costs," Working Papers 13-29, Bank of Canada.
  35. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
  36. Pawel Janus & André Lucas & Anne Opschoor, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute.
  37. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Round-off Errors, Micro-market Price Adjustments and Random Sampling," CIRJE F-Series CIRJE-F-965, CIRJE, Faculty of Economics, University of Tokyo.
  38. Fulvio Corsi & Francesco Audrino, 2008. "Modeling Tick-by-Tick Realized Correlations," University of St. Gallen Department of Economics working paper series 2008 2008-05, Department of Economics, University of St. Gallen.
  39. Peter Reinhard Hansen & Asger Lunde & Valeri Voev, 2012. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and Covolatility," Global COE Hi-Stat Discussion Paper Series gd12-269, Institute of Economic Research, Hitotsubashi University.
  40. Kevin Sheppard, 2014. "Factor High-Frequency Based Volatility (HEAVY) Models," Economics Series Working Papers 710, University of Oxford, Department of Economics.
  41. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
  42. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, School of Economics and Management, University of Aarhus.
  43. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
  44. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
  45. Kim Christensen & Mark Podolskij & Mathias Vetter, 2011. "On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes," CREATES Research Papers 2011-53, School of Economics and Management, University of Aarhus.
  46. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg, 2014. "Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity," CREATES Research Papers 2014-05, School of Economics and Management, University of Aarhus.
  47. Dovonon, Prosper & Gonçalves, Sílvia & Meddahi, Nour, 2013. "Bootstrapping realized multivariate volatility measures," Journal of Econometrics, Elsevier, vol. 172(1), pages 49-65.
  48. Stanislav Anatolyev & Nikita Kobotaev, 2015. "Modeling and Forecasting Realized Covariance Matrices with Accounting for Leverage," Working Papers w0213, Center for Economic and Financial Research (CEFIR).
  49. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
  50. Pawel Janus & André Lucas & Anne Opschoor, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute.
  51. Santos, André A.P. & Nogales, Francisco J. & Ruiz, Esther & Dijk, Dick Van, 2012. "Optimal portfolios with minimum capital requirements," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1928-1942.
  52. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
  53. Wang, Kent & Liu, Junwei & Liu, Zhi, 2013. "Disentangling the effect of jumps on systematic risk using a new estimator of integrated co-volatility," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1777-1786.
  54. Rasmus Tangsgaard Varneskov & Valeri Voev, 2010. "The Role of Realized Ex-post Covariance Measures and Dynamic Model Choice on the Quality of Covariance Forecasts," CREATES Research Papers 2010-45, School of Economics and Management, University of Aarhus.
  55. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
  56. Robert F. Engle & Martin Klint Hansen & Asger Lunde, 2012. "And Now, The Rest of the News: Volatility and Firm Specific News Arrival," CREATES Research Papers 2012-56, School of Economics and Management, University of Aarhus.
  57. Boffelli, Simona & Urga, Giovanni, 2015. "Macroannouncements, bond auctions and rating actions in the European government bond spreads," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 148-173.
  58. Masato Ubukata & Toshiaki Watanabe, 2014. "Market variance risk premiums in Japan for asset predictability," Empirical Economics, Springer, vol. 47(1), pages 169-198, August.
  59. Peter Reinhard Hansen & Guillaume Horel & Asger Lunde & Ilya Archakov, 2015. "A Markov Chain Estimator of Multivariate Volatility from High Frequency Data," CREATES Research Papers 2015-19, School of Economics and Management, University of Aarhus.
  60. Mancino Maria Elvira & Simona Sanfelici, 2009. "Covariance estimation and dynamic asset allocation under microstructure effects via Fourier methodology," Working Papers - Mathematical Economics 2009-09, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  61. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, School of Economics and Management, University of Aarhus.
  62. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2013. "Conditional alphas and realized betas," Textos para discussão 341, Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.