IDEAS home Printed from https://ideas.repec.org/p/jrs/wpaper/202008.html
   My bibliography  Save this paper

Real Time Forecasting of Covid-19 Intensive Care Units demand

Author

Listed:

Abstract

Response management to the SARS-CoV-2 outbreak requires to answer several forecasting tasks. For hospital managers, a major one is to anticipate the likely needs of beds in intensive care in a given catchment area one or two weeks ahead, starting as early as possible in the evolution of the epidemic. This paper proposes to use a bivariate Error Correction model to forecast the needs of beds in intensive care, jointly with the number of patients hospitalised with Covid-19 symptoms. Error Correction models are found to provide reliable forecasts that are tailored to the local characteristics both of epidemic dynamics and of hospital practice for various regions in Europe in Italy, France and Scotland, both at the onset and at later stages of the spread of the disease. This reasonable forecast performance suggests that the present approach may be useful also beyond the set of analysed regions.

Suggested Citation

  • Berta, Paolo & Lovaglio, Pietro Giorgio & Paruolo, Paolo & Verzillo, Stefano, 2020. "Real Time Forecasting of Covid-19 Intensive Care Units demand," Working Papers 2020-08, Joint Research Centre, European Commission (Ispra site).
  • Handle: RePEc:jrs:wpaper:202008
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC121630/jrc121630_real_time_fore_covid_v1.0_jrcwp.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    2. Søren Johansen, 2009. "Representation of Cointegrated Autoregressive Processes with Application to Fractional Processes," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 121-145.
    3. P R Harper & A K Shahani, 2002. "Modelling for the planning and management of bed capacities in hospitals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 11-18, January.
    4. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, Oxford University Press, vol. 131(2), pages 891-941.
    5. Søren Johansen & Rocco Mosconi & Bent Nielsen, 2000. "Cointegration analysis in the presence of structural breaks in the deterministic trend," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 216-249.
    6. Massimo Franchi & Paolo Paruolo, 2019. "A general inversion theorem for cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1176-1201, November.
    7. Clive W.J. Granger, 2004. "Time Series Analysis, Cointegration, and Applications," American Economic Review, American Economic Association, vol. 94(3), pages 421-425, June.
    8. Fanelli, Luca & Paruolo, Paolo, 2010. "Speed of adjustment in cointegrated systems," Journal of Econometrics, Elsevier, vol. 158(1), pages 130-141, September.
    9. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    10. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    11. Takamitsu Kurita & Heino Bohn Nielsen & Anders Rahbek, 2011. "An I(2) cointegration model with piecewise linear trends," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 131-155, July.
    12. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    13. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    14. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    15. Søren Johansen & Rocco Mosconi & Bent Nielsen, 2000. "Cointegration analysis in the presence of structural breaks in the deterministic trend," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 216-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Covid-19 > Health > Allocation and rationing

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Berta & Paolo Paruolo & Stefano Verzillo & Pietro Giorgio Lovaglio, 2020. "A bivariate prediction approach for adapting the health care system response to the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beare, Brendan K. & Seo, Won-Ki, 2020. "Representation Of I(1) And I(2) Autoregressive Hilbertian Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 773-802, October.
    2. Massa, Ricardo & Rosellón, Juan, 2020. "Linear and nonlinear Granger causality between electricity production and economic performance in Mexico," Energy Policy, Elsevier, vol. 142(C).
    3. Nedialko Nestorov, 2015. "Cointegration Approach – Application Opportunities," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 110-140.
    4. Tarlok Singh, 2017. "Are Current Account Deficits in the OECD Countries Sustainable? Robust Evidence from Time-Series Estimators," The International Trade Journal, Taylor & Francis Journals, vol. 31(1), pages 29-64, January.
    5. John G. Gallo & Larry J. Lockwood & Ying Zhang, 2013. "Structuring Global Property Portfolios: A Cointegration Approach," Journal of Real Estate Research, American Real Estate Society, vol. 35(1), pages 53-82.
    6. John L. Glascock & Wikrom Prombutr & Ying Zhang & Tingyu Zhou, 2018. "Can Investors Hold More Real Estate? Evidence from Statistical Properties of Listed REIT versus Non-REIT Property Companies in the U.S," The Journal of Real Estate Finance and Economics, Springer, vol. 56(2), pages 274-302, February.
    7. Liming Zhao & Liang Zhao & Bing-Fu Chen, 2017. "The interrelationship between defence spending, public expenditures and economic growth: evidence from China," Defence and Peace Economics, Taylor & Francis Journals, vol. 28(6), pages 703-718, November.
    8. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5, enero-jun.
    9. Rodríguez-Caballero, Carlos Vladimir & Ventosa-Santaulària, Daniel, 2017. "Energy-growth long-term relationship under structural breaks. Evidence from Canada, 17 Latin American economies and the USA," Energy Economics, Elsevier, vol. 61(C), pages 121-134.
    10. Leiva, Benjamin & Liu, Zhongyuan, 2019. "Energy and economic growth in the USA two decades later: Replication and reanalysis," Energy Economics, Elsevier, vol. 82(C), pages 89-99.
    11. Lusine Lusinyan & John Thornton, 2011. "Unit roots, structural breaks and cointegration in the UK public finances, 1750-2004," Applied Economics, Taylor & Francis Journals, vol. 43(20), pages 2583-2592.
    12. Paul Gallimore & J. Andrew Hansz & Wikrom Prombutr & Ying Zhang, 2014. "Long-term Cointegrative and Short-term Causal Relations among U.S. Real Estate Sectors," International Real Estate Review, Asian Real Estate Society, vol. 17(3), pages 359-394.
    13. Salah A. Nusair & Naser I. Abumustafa, 2012. "Recursive Cointegration Analysis of Purchasing Power Parity: An Application to Asian Countries," The American Economist, Sage Publications, vol. 57(2), pages 196-209, November.
    14. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    15. Garg, Bhavesh & Prabheesh, K.P., 2021. "Testing the intertemporal sustainability of current account in the presence of endogenous structural breaks: Evidence from the top deficit countries," Economic Modelling, Elsevier, vol. 97(C), pages 365-379.
    16. Tarlok Singh, 2016. "On the sectoral linkages and pattern of economic growth in India," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 21(2), pages 257-275, April.
    17. Hannu KOSKINEN, 2010. "Modelling of Structural Changes in Demand for Money Cointegration Relations," EcoMod2004 330600082, EcoMod.
    18. Fatih Kaplan & Ayşe E. Ünal, 2020. "Industrial Production Index - Crude Oil Price Nexus: Russia, Kazakhstan And Azerbaijan," Economic Annals, Faculty of Economics, University of Belgrade, vol. 65(227), pages 119-142, October –.
    19. Thomas Barnay & Olivier Damette, 2012. "What drives Health Care Expenditure in France since 1950? A time-series study with structural breaks and non-linearity approaches," Erudite Working Paper 2012-08, Erudite.
    20. Bevilacqua, Franco, 2006. "Random walks and cointegration relationships in international parity conditions between Germany and USA for the Bretton-Woods period," MERIT Working Papers 2006-016, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    Keywords

    SARS-CoV-2; Covid-19; Intensive Care Units; Cointegration; Error correction models; Health forecasting; Multivariate time series; Vector Autoregression Models;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jrs:wpaper:202008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/eejrcit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Benczur (email available below). General contact details of provider: https://edirc.repec.org/data/eejrcit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.