IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v23y2020i1d10.1007_s10729-018-9461-7.html
   My bibliography  Save this article

Theoretical bounds and approximation of the probability mass function of future hospital bed demand

Author

Listed:
  • Samuel Davis

    (Northeastern University)

  • Nasser Fard

    (Northeastern University)

Abstract

Failing to match the supply of resources to the demand for resources in a hospital can cause non-clinical transfers, diversions, safety risks, and expensive under-utilized resource capacity. Forecasting bed demand helps achieve appropriate safety standards and cost management by proactively adjusting staffing levels and patient flow protocols. This paper defines the theoretical bounds on optimal bed demand prediction accuracy and develops a flexible statistical model to approximate the probability mass function of future bed demand. A case study validates the model using blinded data from a mid-sized Massachusetts community hospital. This approach expands upon similar work by forecasting multiple days in advance instead of a single day, providing a probability mass function of demand instead of a point estimate, using the exact surgery schedule instead of assuming a cyclic schedule, and using patient-level duration-varying length-of-stay distributions instead of assuming patient homogeneity and exponential length of stay distributions. The primary results of this work are an accurate and lengthy forecast, which provides managers better information and more time to optimize short-term staffing adaptations to stochastic bed demand, and a derivation of the minimum mean absolute error of an ideal forecast.

Suggested Citation

  • Samuel Davis & Nasser Fard, 2020. "Theoretical bounds and approximation of the probability mass function of future hospital bed demand," Health Care Management Science, Springer, vol. 23(1), pages 20-33, March.
  • Handle: RePEc:kap:hcarem:v:23:y:2020:i:1:d:10.1007_s10729-018-9461-7
    DOI: 10.1007/s10729-018-9461-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-018-9461-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-018-9461-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander, 2017. "Optimization of hospital ward resources with patient relocation using Markov chain modeling," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1152-1163.
    2. Steven Littig & Mark Isken, 2007. "Short term hospital occupancy prediction," Health Care Management Science, Springer, vol. 10(1), pages 47-66, February.
    3. Hong, Yili, 2013. "On computing the distribution function for the Poisson binomial distribution," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 41-51.
    4. Bing Wang & Xingbao Han & Xianxia Zhang & Shaohua Zhang, 2015. "Predictive-reactive scheduling for single surgical suite subject to random emergency surgery," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 949-966, November.
    5. Yue Zhang & Martin L. Puterman & Matthew Nelson & Derek Atkins, 2012. "A Simulation Optimization Approach to Long-Term Care Capacity Planning," Operations Research, INFORMS, vol. 60(2), pages 249-261, April.
    6. Nikky Kortbeek & Aleida Braaksma & Ferry HF Smeenk & Piet JM Bakker & Richard J Boucherie, 2015. "Integral resource capacity planning for inpatient care services based on bed census predictions by hour," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(7), pages 1061-1076, July.
    7. Yariv Marmor & Thomas Rohleder & David Cook & Todd Huschka & Jeffrey Thompson, 2013. "Recovery bed planning in cardiovascular surgery: a simulation case study," Health Care Management Science, Springer, vol. 16(4), pages 314-327, December.
    8. Fügener, Andreas & Hans, Erwin W. & Kolisch, Rainer & Kortbeek, Nikky & Vanberkel, Peter T., 2014. "Master surgery scheduling with consideration of multiple downstream units," European Journal of Operational Research, Elsevier, vol. 239(1), pages 227-236.
    9. Gary Harrison & Gabriel Escobar, 2010. "Length of stay and imminent discharge probability distributions from multistage models: variation by diagnosis, severity of illness, and hospital," Health Care Management Science, Springer, vol. 13(3), pages 268-279, September.
    10. Elliott N. Weiss & Morris A. Cohen & John C. Hershey, 1982. "An Iterative Estimation and Validation Procedure for Specification of Semi-Markov Models with Application to Hospital Patient Flow," Operations Research, INFORMS, vol. 30(6), pages 1082-1104, December.
    11. H. Xie & T. J. Chaussalet & P. H. Millard, 2005. "A continuous time Markov model for the length of stay of elderly people in institutional long‐term care," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 51-61, January.
    12. Chong Pan & Dali Zhang & Audrey Kon & Charity Wai & Woo Ang, 2015. "Patient flow improvement for an ophthalmic specialist outpatient clinic with aid of discrete event simulation and design of experiment," Health Care Management Science, Springer, vol. 18(2), pages 137-155, June.
    13. Ilona W M Verburg & Nicolette F de Keizer & Evert de Jonge & Niels Peek, 2014. "Comparison of Regression Methods for Modeling Intensive Care Length of Stay," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    14. Thomas Rohleder & Peter Lewkonia & Diane Bischak & Paul Duffy & Rosa Hendijani, 2011. "Using simulation modeling to improve patient flow at an outpatient orthopedic clinic," Health Care Management Science, Springer, vol. 14(2), pages 135-145, June.
    15. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berta, Paolo & Lovaglio, Pietro Giorgio & Paruolo, Paolo & Verzillo, Stefano, 2020. "Real Time Forecasting of Covid-19 Intensive Care Units demand," Working Papers 2020-08, Joint Research Centre, European Commission.
    2. Bekker, René & uit het Broek, Michiel & Koole, Ger, 2023. "Modeling COVID-19 hospital admissions and occupancy in the Netherlands," European Journal of Operational Research, Elsevier, vol. 304(1), pages 207-218.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Bai & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2018. "Operations research in intensive care unit management: a literature review," Health Care Management Science, Springer, vol. 21(1), pages 1-24, March.
    2. Vahab Vahdat & Jacqueline Griffin & James E. Stahl, 2018. "Decreasing patient length of stay via new flexible exam room allocation policies in ambulatory care clinics," Health Care Management Science, Springer, vol. 21(4), pages 492-516, December.
    3. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    4. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    5. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    6. Jie Bai & Andreas Fügener & Jochen Gönsch & Jens O. Brunner & Manfred Blobner, 2021. "Managing admission and discharge processes in intensive care units," Health Care Management Science, Springer, vol. 24(4), pages 666-685, December.
    7. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović & Izack Cohen, 2020. "Bed Blocking in Hospitals Due to Scarce Capacity in Geriatric Institutions—Cost Minimization via Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 396-411, March.
    8. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    9. Chang Wook Kang & Muhammad Imran & Muhammad Omair & Waqas Ahmed & Misbah Ullah & Biswajit Sarkar, 2019. "Stochastic-Petri Net Modeling and Optimization for Outdoor Patients in Building Sustainable Healthcare System Considering Staff Absenteeism," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    10. José Carlos Ferrão & Mónica Duarte Oliveira & Daniel Gartner & Filipe Janela & Henrique M. G. Martins, 2021. "Leveraging electronic health record data to inform hospital resource management," Health Care Management Science, Springer, vol. 24(4), pages 716-741, December.
    11. Liping Zhou & Na Geng & Zhibin Jiang & Shan Jiang, 2022. "Integrated Multiresource Capacity Planning and Multitype Patient Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 129-149, January.
    12. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G., 2016. "Predictive analytics model for healthcare planning and scheduling," European Journal of Operational Research, Elsevier, vol. 253(1), pages 121-131.
    13. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    14. C Pelletier & T J Chaussalet & H Xie, 2005. "A framework for predicting gross institutional long-term care cost arising from known commitments at local authority level," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(2), pages 144-152, February.
    15. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    16. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    17. Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
    18. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    19. Mauricio Romero & Ã lvaro Riascos & Diego Jara, 2015. "On the Optimality of Answer-Copying Indices," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 435-453, October.
    20. Alexander Hübner & Heinrich Kuhn & Manuel Walther, 2018. "Combining clinical departments and wards in maximum-care hospitals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 679-709, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:23:y:2020:i:1:d:10.1007_s10729-018-9461-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.