IDEAS home Printed from https://ideas.repec.org/e/pin48.html
   My authors  Follow this author

Elena Inarra

Personal Details

First Name:Elena
Middle Name:
Last Name:Inarra
Suffix:
RePEc Short-ID:pin48
[This author has chosen not to make the email address public]
http://www.ehu.es/einarra

Affiliation

Departamento de Fundamentos del Análisis Económico I
Facultad de Ciencias Económicas y Empresariales
Universidad del País Vasco - Euskal Herriko Unibertsitatea

Bilbao, Spain
http://www.ehu.es/fundamentosI/

: 34-946013799
34-946013891
Avenida Lehendakari Aguirre, 83, 48015 Bilbao
RePEc:edi:f1ehues (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Peter Biro & Elena Iñarra & Elena Molis, 2014. "A new solution for the roommate problem. The Q-stable matchings," ThE Papers 14/04, Department of Economic Theory and Economic History of the University of Granada..
  2. Iñarra García, María Elena & Laruelle, Annick & Zuazo Garín, Peio, 2012. "Games with perceptions," IKERLANAK Ikerlanak;2012-64, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
  3. Iñarra García, María Elena & Larrea Jaurrieta, María Concepción & Saracho de la Torre, Ana Isabel, 2012. "The von Neumann-Morgenstern stable sets for 2x2 games," IKERLANAK Ikerlanak;2012-65, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
  4. INARRA, Elena & LARREA, Conchi & MOLIS, Elena, 2010. "The stability of the roommate problem revisited," CORE Discussion Papers 2010007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Anders Skonhoft & Elena Inarra, 2007. "Restoring a Fish Stock: A Dynamic Bankruptcy Problem," Working Paper Series 8507, Department of Economics, Norwegian University of Science and Technology.
  6. Brânzei, R. & Inarra, E. & Tijs, S.H. & Zarzuelo, J., 2003. "An Algorithm for the Nucleolus of Airport Profit Problems," Discussion Paper 2003-50, Tilburg University, Center for Economic Research.
  7. Brânzei, R. & Inarra, E. & Tijs, S.H. & Zarzuelo, J., 2002. "Cooperation by Asymmetric Agents in a Joint Project," Discussion Paper 2002-15, Tilburg University, Center for Economic Research.
  8. Elena INARRA & Ana MAULEON & Vincent VANNETELBOSCH, 1999. "Efficient Structure of Provision for Emergency Public Services," Discussion Papers (REL - Recherches Economiques de Louvain) 1999013, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  9. Arin, J. & Inarra, E., 1997. "Consistency and Egalitarianism: The Egalitarian Set," ASSET - Instituto De Economia Publica 163, ASSET (Association of Southern European Economic Theorists).

Articles

  1. Arin, J. & Benito-Ostolaza, J. & Inarra, E., 2017. "The reverse Talmud family of rules for bankruptcy Problems: A characterization," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 43-49.
  2. Inarra, E. & Larrea, C. & Saracho, A., 2014. "The von Neumann–Morgenstern stable sets for the mixed extension of 2×2 games," Economics Letters, Elsevier, vol. 125(1), pages 70-73.
  3. Iñarra, E. & Larrea, C. & Molis, E., 2013. "Absorbing sets in roommate problems," Games and Economic Behavior, Elsevier, vol. 81(C), pages 165-178.
  4. Inarra, E. & Larrea, C. & Saracho, A., 2010. "Deriving Nash equilibria as the supercore for a relational system," Journal of Mathematical Economics, Elsevier, vol. 46(2), pages 141-147, March.
  5. J. Arin & E. Inarra & P. Luquin, 2009. "A noncooperative view on two airport cost sharing rules," Review of Economic Design, Springer;Society for Economic Design, vol. 13(4), pages 361-376, December.
  6. Elena Inarra & Anders Skonhoft, 2008. "Restoring a Fish Stock: A Dynamic Bankruptcy Problem," Land Economics, University of Wisconsin Press, vol. 84(2), pages 327-339.
  7. E. Inarra & C. Larrea & E. Molis, 2008. "Random paths to P-stability in the roommate problem," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 461-471, March.
  8. Inarra, Elena & Concepcion Larrea, M. & Saracho, Ana I., 2007. "The supercore for normal-form games," Journal of Economic Theory, Elsevier, vol. 132(1), pages 530-538, January.
  9. Inarra, Elena & Larrea, Concepcion, 2007. "A characterization of path dependent modes of behavior," Mathematical Social Sciences, Elsevier, vol. 54(2), pages 128-136, September.
  10. Elena Inarra & Jeroen Kuipers & N. Olaizola, 2005. "Absorbing and generalized stable sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 24(3), pages 433-437, June.
  11. R. Branzei & E. Inarra & S. Tijs & J. M. Zarzuelo, 2005. "Cooperation by Asymmetric Agents in a Joint Project," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 7(4), pages 623-640, October.
  12. Javier Arin & Elena Inarra, 2001. "Egalitarian solutions in the core," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 187-193.
  13. M. P. Espinosa & E. Inarra, 2000. "Von Neumann And Morgenstern Stable Sets In A Cournot Merger System," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 29-45.
  14. Fritz Grafe & Elena Inarra & Ana Mauleon, 1999. "An algorithm for computing the stable coalition structures in tree-graph communication games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 71-80, June.
  15. F. Grafe & E. Iñarra & J. M. Zarzuelo, 1998. "Population monotonic allocation schemes on externality games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(1), pages 71-80, September.
  16. Arin, Javier & Inarra, Elena, 1998. "A Characterization of the Nucleolus for Convex Games," Games and Economic Behavior, Elsevier, vol. 23(1), pages 12-24, April.
  17. María Gallastegui & Fritz Grafe & Elena Inarra, 1997. "Congestion effects in a public-good economy," Journal of Economics, Springer, vol. 66(2), pages 189-204, June.
  18. F. Grafe & A. Mauleon & E. Iñarra, 1995. "A simple procedure to compute the nucleolus of Γ-component additive games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(2), pages 235-245, December.
  19. Inarra, Elena & Usategui, Jose M, 1993. "The Shapley Value and Average Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(1), pages 13-29.
  20. Grafe, F. & Inarra, E., 1993. "On the contribution of an additional player to a convex game," Economics Letters, Elsevier, vol. 43(1), pages 27-30.
  21. Gallo, Oihane & Inarra, Elena, 0. "Rationing rules and stable coalition structures," Theoretical Economics, Econometric Society.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. INARRA, Elena & LARREA, Conchi & MOLIS, Elena, 2010. "The stability of the roommate problem revisited," CORE Discussion Papers 2010007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Cited by:

    1. Bettina Klaus & Flip Klijn & Markus Walzl, 2008. "Stochastic Stability for Roommate Markets," Working Papers 357, Barcelona Graduate School of Economics.
    2. Jens Gudmundsson, 2014. "Sequences in Pairing Problems: A new approach to reconcile stability with strategy-proofness for elementary matching problems," 2014 Papers pgu351, Job Market Papers.
    3. MAULEON, Ana & MOLIS, Elena & VANNETELBOSCH, Vincent & VERGOTE, Wouter, 2011. "Absolutely stable roommate problems," CORE Discussion Papers 2011029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Peter Biro & Gethin Norman, 2011. "Analysis of Stochastic Matching Markets," IEHAS Discussion Papers 1132, Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences.
    5. Hakan İnal, 2014. "A Generalization of the Lone Wolf Theorem," Metroeconomica, Wiley Blackwell, vol. 65(4), pages 541-547, November.

  2. Brânzei, R. & Inarra, E. & Tijs, S.H. & Zarzuelo, J., 2002. "Cooperation by Asymmetric Agents in a Joint Project," Discussion Paper 2002-15, Tilburg University, Center for Economic Research.

    Cited by:

    1. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    2. Ryusuke Shinohara, 2014. "Participation and demand levels for a joint project," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(4), pages 925-952, December.
    3. Tijs, S.H. & Brânzei, R., 2004. "Cases in Cooperation and Cutting the Cake," Discussion Paper 2004-108, Tilburg University, Center for Economic Research.
    4. Brânzei, R. & Inarra, E. & Tijs, S.H. & Zarzuelo, J., 2003. "An Algorithm for the Nucleolus of Airport Profit Problems," Discussion Paper 2003-50, Tilburg University, Center for Economic Research.

  3. Arin, J. & Inarra, E., 1997. "Consistency and Egalitarianism: The Egalitarian Set," ASSET - Instituto De Economia Publica 163, ASSET (Association of Southern European Economic Theorists).

    Cited by:

    1. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, J., 1998. "Characterizations of the Egalitarian Solution for Convex Games," Discussion Paper 1998-33, Tilburg University, Center for Economic Research.
    2. Flip Klijn & Dries Vermeulen & Herbert Hamers & Tamás Solymosi & Stef Tijs & Joan Pere Villar, 2003. "Neighbor games and the leximax solution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(2), pages 191-208, November.
    3. Arin Aguirre, Francisco Javier, 2003. "Egalitarian distributions in coalitional models: The Lorenz criterion," IKERLANAK 2003-02, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    4. Koster, M.A.L., 1999. "Weighted Constrained Egalitarianism in TU-Games," Discussion Paper 1999-107, Tilburg University, Center for Economic Research.
    5. Arin, Javier & Kuipers, Jeroen & Vermeulen, Dries, 2003. "Some characterizations of egalitarian solutions on classes of TU-games," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 327-345, December.
    6. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, I., 2000. "The egalitarian solution for convex games : Some characterizations," Other publications TiSEM 614b77cd-430c-4048-856f-8, Tilburg University, School of Economics and Management.

Articles

  1. Arin, J. & Benito-Ostolaza, J. & Inarra, E., 2017. "The reverse Talmud family of rules for bankruptcy Problems: A characterization," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 43-49.

    Cited by:

    1. René Brink & Juan D. Moreno-Ternero, 2017. "The reverse TAL-family of rules for bankruptcy problems," Annals of Operations Research, Springer, vol. 254(1), pages 449-465, July.
    2. Josep Maria Izquierdo Aznar & Pere Timoner Lledó, 2016. "Constrained multi-issue rationing problems," UB Economics Working Papers 2016/347, Universitat de Barcelona, Facultat d'Economia i Empresa, UB Economics.

  2. Iñarra, E. & Larrea, C. & Molis, E., 2013. "Absorbing sets in roommate problems," Games and Economic Behavior, Elsevier, vol. 81(C), pages 165-178.

    Cited by:

    1. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    2. Nax, Heinrich H. & Pradelski, Bary S. R., 2015. "Evolutionary dynamics and equitable core selection in assignment games," LSE Research Online Documents on Economics 65428, London School of Economics and Political Science, LSE Library.
    3. Biró, Péter & Iñarra García, María Elena & Molis Bañales, Elena, 2014. "A new solution for the roommate problem: The Q-stable matchings," IKERLANAK Ikerlanak;2014-81, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    4. MAULEON, Ana & MOLIS, Elena & VANNETELBOSCH, Vincent & VERGOTE , Wouter, 2013. "Dominance invariant one-to-one matching problems," CORE Discussion Papers 2013052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Biró, Péter & Iñarra, Elena & Molis, Elena, 2016. "A new solution concept for the roommate problem: Q-stable matchings," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 74-82.
    6. Duygu Nizamogullari & İpek Özkal-Sanver, 2015. "Consistent enlargements of the core in roommate problems," Theory and Decision, Springer, vol. 79(2), pages 217-225, September.

  3. J. Arin & E. Inarra & P. Luquin, 2009. "A noncooperative view on two airport cost sharing rules," Review of Economic Design, Springer;Society for Economic Design, vol. 13(4), pages 361-376, December.

    Cited by:

    1. Hu, Cheng-Cheng & Tsay, Min-Hung & Yeh, Chun-Hsien, 2018. "A study of the nucleolus in the nested cost-sharing problem: Axiomatic and strategic perspectives," Games and Economic Behavior, Elsevier, vol. 109(C), pages 82-98.

  4. E. Inarra & C. Larrea & E. Molis, 2008. "Random paths to P-stability in the roommate problem," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 461-471, March.

    Cited by:

    1. Özkal-Sanver, Ipek, 2010. "Impossibilities for roommate problems," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 360-363, May.
    2. Bettina Klaus & Flip Klijn & Markus Walzl, 2008. "Stochastic Stability for Roommate Markets," Working Papers 357, Barcelona Graduate School of Economics.
    3. Jens Gudmundsson, 2014. "Sequences in Pairing Problems: A new approach to reconcile stability with strategy-proofness for elementary matching problems," 2014 Papers pgu351, Job Market Papers.
    4. Peter Biro & Gethin Norman, 2011. "Analysis of Stochastic Matching Markets," IEHAS Discussion Papers 1132, Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences.
    5. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    6. Iñarra García, María Elena & Larrea Jaurrieta, María Concepción & Molis Bañales, Elena, 2007. "The Stability of the Roommate Problem Revisited," IKERLANAK 2007-30, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    7. Nax, Heinrich H. & Pradelski, Bary S. R., 2015. "Evolutionary dynamics and equitable core selection in assignment games," LSE Research Online Documents on Economics 65428, London School of Economics and Political Science, LSE Library.
    8. Bettina-Elisabeth Klaus & Flip Klijn & Markus Walzl, 2009. "Farsighted Stability for Roommate Markets," Harvard Business School Working Papers 09-135, Harvard Business School.
    9. Biró, Péter & Iñarra García, María Elena & Molis Bañales, Elena, 2014. "A new solution for the roommate problem: The Q-stable matchings," IKERLANAK Ikerlanak;2014-81, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    10. Péter Biró & Katarína Cechlárová & Tamás Fleiner, 2008. "The dynamics of stable matchings and half-matchings for the stable marriage and roommates problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 333-352, March.
    11. Emiliya Lazarova & Dinko Dimitrov, 2017. "Paths to stability in two-sided matching under uncertainty," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 29-49, March.
    12. Ahmet Alkan & Alparslan Tuncay, 2014. "Pairing Games and Markets," Working Papers 2014.48, Fondazione Eni Enrico Mattei.
    13. Biró, Péter & Iñarra, Elena & Molis, Elena, 2016. "A new solution concept for the roommate problem: Q-stable matchings," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 74-82.
    14. Iñarra, E. & Larrea, C. & Molis, E., 2013. "Absorbing sets in roommate problems," Games and Economic Behavior, Elsevier, vol. 81(C), pages 165-178.
    15. Duygu Nizamogullari & İpek Özkal-Sanver, 2015. "Consistent enlargements of the core in roommate problems," Theory and Decision, Springer, vol. 79(2), pages 217-225, September.

  5. Inarra, Elena & Concepcion Larrea, M. & Saracho, Ana I., 2007. "The supercore for normal-form games," Journal of Economic Theory, Elsevier, vol. 132(1), pages 530-538, January.

    Cited by:

    1. Inarra, E. & Larrea, C. & Saracho, A., 2010. "Deriving Nash equilibria as the supercore for a relational system," Journal of Mathematical Economics, Elsevier, vol. 46(2), pages 141-147, March.
    2. Luo, Xiao, 2009. "The foundation of stability in extensive games with perfect information," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 860-868, December.

  6. Elena Inarra & Jeroen Kuipers & N. Olaizola, 2005. "Absorbing and generalized stable sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 24(3), pages 433-437, June.

    Cited by:

    1. Kuipers, Jerome & Olaizola Ortega, María Norma, 2004. "Internal Organization of Firms and Cartel Formation," IKERLANAK 2004-15, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    2. Houy Nicolas, 2009. "More on the stable, generalized stable, absorbing and admissible sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(4), pages 691-698, November.
    3. Weibin Han & Adrian Deemen & D. Ary A. Samsura, 2016. "A note on extended stable sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(2), pages 265-275, August.
    4. Page Jr., Frank H. & Wooders, Myrna, 2009. "Strategic basins of attraction, the path dominance core, and network formation games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 462-487, May.
    5. Olaizola Ortega, María Norma, 2003. "An Approach to the stability of international environmental agreements: the absorbing sets solution," IKERLANAK 2003-10, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.

  7. R. Branzei & E. Inarra & S. Tijs & J. M. Zarzuelo, 2005. "Cooperation by Asymmetric Agents in a Joint Project," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 7(4), pages 623-640, October.
    See citations under working paper version above.
  8. Javier Arin & Elena Inarra, 2001. "Egalitarian solutions in the core," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 187-193.

    Cited by:

    1. Llerena, Francesc & Mauri, Llúcia, 2017. "On the existence of the Dutta–Ray’s egalitarian solution," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 92-99.
    2. Michel Le Breton & Juan Moreno-Ternero & Alexei Savvateev & Shlomo Weber, 2013. "Stability and fairness in models with a multiple membership," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 673-694, August.
    3. Llerena Garrés, Francesc & Vilella Bach, Misericòrdia, 2013. "The equity core and the Lorenz-maximal allocations in the equal division core," Working Papers 2072/212194, Universitat Rovira i Virgili, Department of Economics.
    4. Laurent Lamy, 2009. "Ascending auctions: some impossibility results and their resolutions with final price discounts," PSE Working Papers halshs-00575076, HAL.
    5. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2004. "Egalitarianism in convex fuzzy games," Other publications TiSEM feab7e25-2f43-47e3-9658-b, Tilburg University, School of Economics and Management.
    6. Arin Aguirre, Francisco Javier & Iñarra García, María Elena & Luquin, Paloma, 2006. "A noncooperative view on two consistent aiport cost sharing rules," IKERLANAK 2006-23, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    7. Arin Aguirre, Francisco Javier, 2003. "Egalitarian distributions in coalitional models: The Lorenz criterion," IKERLANAK 2003-02, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    8. J. Arin & E. Inarra & P. Luquin, 2009. "A noncooperative view on two airport cost sharing rules," Review of Economic Design, Springer;Society for Economic Design, vol. 13(4), pages 361-376, December.
    9. Hougaard, Jens Leth & Østerdal, Lars Peter, 2010. "Monotonicity of social welfare optima," Games and Economic Behavior, Elsevier, vol. 70(2), pages 392-402, November.
    10. Francesc Llerena & Llúcia Mauri, 2016. "Reduced games and egalitarian solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1053-1069, November.
    11. Francesc Llerena & Carles Rafels & Cori Vilella, 2008. "A simple procedure for computing strong constrained egalitarian allocations," Working Papers 327, Barcelona Graduate School of Economics.
    12. Javier Arin & Jeroen Kuipers & Dries Vermeulen, 2008. "An axiomatic approach to egalitarianism in TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 565-580, December.
    13. Laurent Lamy, 2009. "Ascending auctions: some impossibility results and their resolutions with final price discounts," Working Papers halshs-00575076, HAL.
    14. Vincent Iehlé, 2015. "The lattice structure of the S-Lorenz core," Theory and Decision, Springer, vol. 78(1), pages 141-151, January.
    15. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2004. "The Equal Split-Off Set for Cooperative Games," Discussion Paper 2004-110, Tilburg University, Center for Economic Research.
    16. Arin Aguirre, Francisco Javier & Feltkamp, Vincent, 2005. "Implementing with veto players: a simple non cooperative game," IKERLANAK 2005-17, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    17. Francesc Llerena & Llúcia Mauri, 2015. "On the Lorenz-maximal allocations in the imputation set," Economics Bulletin, AccessEcon, vol. 35(4), pages 2475-2481.
    18. Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2014. "On reduced games and the lexmax solution," Working Papers 2072/237591, Universitat Rovira i Virgili, Department of Economics.
    19. Dietzenbacher, Bas & Borm, Peter & Hendrickx, Ruud, 2017. "The procedural egalitarian solution," Games and Economic Behavior, Elsevier, vol. 106(C), pages 179-187.
    20. Dietzenbacher, Bas & Borm, Peter & Hendrickx, Ruud, 2016. "The Procedural Egalitarian Solution," Discussion Paper 2016-041, Tilburg University, Center for Economic Research.
    21. Sánchez-Soriano, J. & Brânzei, R. & Llorca, N. & Tijs, S.H., 2010. "A Technical Note on Lorenz Dominance in Cooperative Games," Discussion Paper 2010-101, Tilburg University, Center for Economic Research.
    22. Arin, J. & Feltkamp, V., 2007. "Coalitional games with veto players: Consistency, monotonicity and Nash outcomes," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 855-870, September.
    23. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Egalitarianism in Multi-Choice Games," Discussion Paper 2007-55, Tilburg University, Center for Economic Research.

  9. M. P. Espinosa & E. Inarra, 2000. "Von Neumann And Morgenstern Stable Sets In A Cournot Merger System," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 29-45.

    Cited by:

    1. Kóczy Á., László, 2006. "A Neumann-féle játékelmélet
      [Neumanns game theory]
      ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 31-45.
    2. Kuipers, Jerome & Olaizola Ortega, María Norma, 2004. "Internal Organization of Firms and Cartel Formation," IKERLANAK 2004-15, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    3. Iñarra García, María Elena & Kuipers, Jerome & Olaizola Ortega, María Norma, 2001. "Absorbing Sets in Coalitional Systems," BILTOKI 2002-01, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    4. Chica Páez, Yolanda & Espinosa Alejos, María Paz, 2005. "Union Formation and Bargaining Rules in the Labor Market," DFAEII Working Papers 2005-07, University of the Basque Country - Department of Foundations of Economic Analysis II.

  10. F. Grafe & E. Iñarra & J. M. Zarzuelo, 1998. "Population monotonic allocation schemes on externality games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(1), pages 71-80, September.

    Cited by:

    1. Paula Corcho & José Ferreira, 2003. "Generalized externality games," Theory and Decision, Springer, vol. 54(2), pages 163-184, March.
    2. Guardiola, Luis A. & Meca, Ana & Puerto, Justo, 2008. "Production-inventory games and PMAS-games: Characterizations of the Owen point," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 96-108, July.
    3. Josep Maria Izquierdo Aznar, 2003. "Regular Population Monotonic Allocation Schemes and the Core," Working Papers in Economics 110, Universitat de Barcelona. Espai de Recerca en Economia.

  11. Arin, Javier & Inarra, Elena, 1998. "A Characterization of the Nucleolus for Convex Games," Games and Economic Behavior, Elsevier, vol. 23(1), pages 12-24, April.

    Cited by:

    1. Thomson, William, 2015. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update," Mathematical Social Sciences, Elsevier, vol. 74(C), pages 41-59.
    2. J. Arin & I. Katsev, 2016. "A monotonic core solution for convex TU games," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1013-1029, November.
    3. Arin Aguirre, Francisco Javier & Katsev, Ilya, 2013. "The coincidence of the kernel and nucleolus of a convex game: an alternative proof," IKERLANAK Ikerlanak;2013-67, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    4. Kuipers, Jeroen & Mosquera, Manuel A. & Zarzuelo, José M., 2013. "Sharing costs in highways: A game theoretic approach," European Journal of Operational Research, Elsevier, vol. 228(1), pages 158-168.
    5. René Brink & Ilya Katsev & Gerard Laan, 2011. "A polynomial time algorithm for computing the nucleolus for a class of disjunctive games with a permission structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 591-616, August.
    6. Arin Aguirre, Francisco Javier & Katsev, Ilya, 2016. "The SD-prekernel for TU games," IKERLANAK Ikerlanak;2016-96, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.

  12. María Gallastegui & Fritz Grafe & Elena Inarra, 1997. "Congestion effects in a public-good economy," Journal of Economics, Springer, vol. 66(2), pages 189-204, June.

    Cited by:

    1. MAULEON, Ana & VANNETELBOSCH, Vincent, 1999. "Coalitional negotiation," CORE Discussion Papers 1999020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

  13. Inarra, Elena & Usategui, Jose M, 1993. "The Shapley Value and Average Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(1), pages 13-29.

    Cited by:

    1. Antonio Magaña & Francesc Carreras, 2018. "Coalition Formation and Stability," Group Decision and Negotiation, Springer, vol. 27(3), pages 467-502, June.
    2. Corcho, Paula, 1996. "Generalized externality games: economic applications," UC3M Working papers. Economics 3979, Universidad Carlos III de Madrid. Departamento de Economía.
    3. Zhao, Jingang, 1999. "A necessary and sufficient condition for the convexity in oligopoly games," Mathematical Social Sciences, Elsevier, vol. 37(2), pages 189-204, March.
    4. Driessen, Theo S.H. & Meinhardt, Holger I., 2005. "Convexity of oligopoly games without transferable technologies," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 102-126, July.
    5. Slikker, M., 1998. "Average Convexity in Communication Situations," Discussion Paper 1998-12, Tilburg University, Center for Economic Research.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Rankings

This author is among the top 5% authors according to these criteria:
  1. Record of graduates

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 5 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-GTH: Game Theory (4) 2010-06-11 2012-12-06 2012-12-15 2014-10-13
  2. NEP-MIC: Microeconomics (2) 2012-12-06 2012-12-15
  3. NEP-AGR: Agricultural Economics (1) 2007-06-02
  4. NEP-CTA: Contract Theory & Applications (1) 2012-12-06
  5. NEP-ENV: Environmental Economics (1) 2007-06-02

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Elena Inarra should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.