IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v53y2024i1d10.1007_s00182-023-00864-1.html
   My bibliography  Save this article

An egalitarian solution to minimum cost spanning tree problems

Author

Listed:
  • Emre Doğan

    (HSE University)

  • İbrahim Barış Esmerok

    (AES Clean Energy Services, LLC)

Abstract

We introduce a new core selection to minimum cost spanning tree problems satisfying continuity, population and cost monotonicity, solidarity, and ranking. We prove that it Lorenz dominates every other allocation in the irreducible core of the problem, including the celebrated folk solution unless they yield the same outcome. Therefore, among the core selections satisfying solidarity, our solution generates the most egalitarian outcome for each problem.

Suggested Citation

  • Emre Doğan & İbrahim Barış Esmerok, 2024. "An egalitarian solution to minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(1), pages 127-141, March.
  • Handle: RePEc:spr:jogath:v:53:y:2024:i:1:d:10.1007_s00182-023-00864-1
    DOI: 10.1007/s00182-023-00864-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-023-00864-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-023-00864-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
    2. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-635, May.
    3. Norde, Henk & Moretti, Stefano & Tijs, Stef, 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 154(1), pages 84-97, April.
    4. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Other publications TiSEM 56ea8c64-a05f-4b3f-ab61-9, Tilburg University, School of Economics and Management.
    5. Flip Klijn & Stef Tijs & Marco Slikker, 2001. "A Dual Egalitarian Solution," Economics Bulletin, AccessEcon, vol. 3(10), pages 1-8.
    6. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    7. Jens Leth Hougaard & Lars Thorlund-Petersen & Bezalel Peleg, 2001. "On the set of Lorenz-maximal imputations in the core of a balanced game," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 147-165.
    8. Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006. "Obligation rules for minimum cost spanning tree situations and their monotonicity properties," European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
    9. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    10. Ruben Juarez & Rajnish Kumar, 2013. "Implementing efficient graphs in connection networks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(2), pages 359-403, October.
    11. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
    12. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Discussion Paper 2003-129, Tilburg University, Center for Economic Research.
    13. Dutta, B, 1990. "The Egalitarian Solution and Reduced Game Properties in Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 153-169.
    14. S. H. Tijs & M. Koster & E. Molina & Y. Sprumont, 2002. "Sharing the cost of a network: core and core allocations," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(4), pages 567-599.
    15. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    16. William Thomson, 2007. "Cost allocation and airport problems," RCER Working Papers 537, University of Rochester - Center for Economic Research (RCER).
    17. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
    18. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    19. Javier Arin & Jeroen Kuipers & Dries Vermeulen, 2008. "An axiomatic approach to egalitarianism in TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 565-580, December.
    20. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    21. Javier Arin & Elena Inarra, 2001. "Egalitarian solutions in the core," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 187-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dietzenbacher, Bas & Dogan, Emre, 2024. "Population monotonicity and egalitarianism," Research Memorandum 007, Maastricht University, Graduate School of Business and Economics (GSBE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    2. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    3. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    4. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    5. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
    6. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    7. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    8. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
    9. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
    10. Gustavo Bergantiños & María Gómez-Rúa, 2010. "Minimum cost spanning tree problems with groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(2), pages 227-262, May.
    11. Kusunoki, Yoshifumi & Tanino, Tetsuzo, 2017. "Investigation on irreducible cost vectors in minimum cost arborescence problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 214-221.
    12. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    13. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
    14. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
    15. Christian Trudeau, 2014. "Linking the Kar and folk solutions through a problem separation property," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 845-870, November.
    16. Liu, Siwen & Borm, Peter & Norde, Henk, 2023. "Induced Rules for Minimum Cost Spanning Tree Problems : Towards Merge-Proofness and Coalitional Stability," Discussion Paper 2023-021, Tilburg University, Center for Economic Research.
    17. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    18. Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
    19. Gomez-Rua, Maria & Vidal-Puga, Juan, 2006. "No advantageous merging in minimum cost spanning tree problems," MPRA Paper 601, University Library of Munich, Germany.
    20. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:53:y:2024:i:1:d:10.1007_s00182-023-00864-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.