IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/62923.html
   My bibliography  Save this paper

A monotonic and merge-proof rule in minimum cost spanning tree situations

Author

Listed:
  • Gómez-Rúa, María
  • Vidal-Puga, Juan

Abstract

We present a new model for cost sharing in minimum cost spanning tree problems, so that the planner can identify the agents that merge. Under this new framework, and as opposed to the traditional model, there exist rules that satisfy merge-proofness. Besides, by strengthening this property and adding some other properties, such as population-monotonicity and solidarity, we characterize a unique rule that coincides with the weighted Shapley value of an associated cost game.

Suggested Citation

  • Gómez-Rúa, María & Vidal-Puga, Juan, 2015. "A monotonic and merge-proof rule in minimum cost spanning tree situations," MPRA Paper 62923, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:62923
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/62923/1/MPRA_paper_62923.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chun, Youngsub, 1988. "The proportional solution for rights problems," Mathematical Social Sciences, Elsevier, vol. 15(3), pages 231-246, June.
    2. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    3. Yves Sprumont, 2005. "On the Discrete Version of the Aumann-Shapley Cost-Sharing Method," Econometrica, Econometric Society, vol. 73(5), pages 1693-1712, September.
    4. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
    5. Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
    6. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Merge-proofness in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 309-329, May.
    7. Norde, Henk & Moretti, Stefano & Tijs, Stef, 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 154(1), pages 84-97, April.
    8. Leticia Lorenzo & Silvia Lorenzo-Freire, 2009. "A characterization of Kruskal sharing rules for minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 107-126, March.
    9. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    10. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
    11. Peter Knudsen & Lars Østerdal, 2012. "Merging and splitting in cooperative games: some (im)possibility results," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 763-774, November.
    12. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    13. Hart, Sergiu, 1974. "Formation of cartels in large markets," Journal of Economic Theory, Elsevier, vol. 7(4), pages 453-466, April.
    14. Postlewaite, Andrew & Rosenthal, Robert W., 1974. "Disadvantageous syndicates," Journal of Economic Theory, Elsevier, vol. 9(3), pages 324-326, November.
    15. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    16. Ruben Juarez & Rajnish Kumar, 2013. "Implementing efficient graphs in connection networks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(2), pages 359-403, October.
    17. Ju, Biung-Ghi & Miyagawa, Eiichi & Sakai, Toyotaka, 2007. "Non-manipulable division rules in claim problems and generalizations," Journal of Economic Theory, Elsevier, vol. 132(1), pages 1-26, January.
    18. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    19. Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(1), pages 47-61, April.
    20. Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
    21. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    22. Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.
    23. repec:hal:journl:halshs-01207823 is not listed on IDEAS
    24. Legros, Patrick, 1987. "Disadvantageous syndicates and stable cartels: The case of the nucleolus," Journal of Economic Theory, Elsevier, vol. 42(1), pages 30-49, June.
    25. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    26. Gustavo Bergantiños & Leticia Lorenzo & Silvia Lorenzo-Freire, 2010. "The family of cost monotonic and cost additive rules in minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 695-710, April.
    27. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01207823, HAL.
    28. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    29. Jens Hougaard & Hervé Moulin & Lars Østerdal, 2010. "Decentralized pricing in minimum cost spanning trees," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 293-306, August.
    30. Biung-Ghi Ju, 2003. "Manipulation via merging and splitting in claims problems," Review of Economic Design, Springer;Society for Economic Design, vol. 8(2), pages 205-215, October.
    31. M. Angeles de Frutos, 1999. "Coalitional manipulations in a bankruptcy problem," Review of Economic Design, Springer;Society for Economic Design, vol. 4(3), pages 255-272.
    32. Maschler, Michael, 1976. "An advantage of the bargaining set over the core," Journal of Economic Theory, Elsevier, vol. 13(2), pages 184-192, October.
    33. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Discussion Paper 2003-129, Tilburg University, Center for Economic Research.
    34. Andrew Postlewaite, 1974. "Disadvantageous Syndicates in Exchange Economies," Discussion Papers 105, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    35. Gustavo Bergantiños & Juan Vidal-Puga, 2007. "The optimistic TU game in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(2), pages 223-239, October.
    36. Moulin, Hervé, 2008. "Proportional scheduling, split-proofness, and merge-proofness," Games and Economic Behavior, Elsevier, vol. 63(2), pages 567-587, July.
    37. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Minimum cost spanning tree problems; cost sharing; core selection; cost-monotonicity; merge-proofness; weighted Shapley value.;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D7 - Microeconomics - - Analysis of Collective Decision-Making

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:62923. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.