On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gustavo Bergantiños & Leticia Lorenzo, 2004. "A non-cooperative approach to the cost spanning tree problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 393-403, July.
- Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
- Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007.
"A fair rule in minimum cost spanning tree problems,"
Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
- Gustavo Bergantiños & Juan Vidal-Puga, 2005. "A fair rule in minimum cost spanning tree problems," Game Theory and Information 0504001, University Library of Munich, Germany.
- Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004.
"The P-value for cost sharing in minimum,"
Theory and Decision, Springer, vol. 56(1), pages 47-61, April.
- Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(2_2), pages 47-61, February.
- Dutta, Bhaskar & Kar, Anirban, 2004.
"Cost monotonicity, consistency and minimum cost spanning tree games,"
Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
- Dutta, Bhaskar & Kar, Anirban, 2002. "Cost Monotonicity, Consistency And Minimum Cost Spanning Tree Games," The Warwick Economics Research Paper Series (TWERPS) 629, University of Warwick, Department of Economics.
- Bhaskar Dutta & Anirban Kar, 2002. "Cost monotonicity, consistency and minimum cost spanning tree games," Discussion Papers 02-04, Indian Statistical Institute, Delhi.
- Dutta, Bhaskar & Kar, Anirban, 2002. "Cost Monotonicity, Consistency and Minimum Cost Spanning Tree Games," Economic Research Papers 269403, University of Warwick - Department of Economics.
- Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
- Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003.
"The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations,"
Discussion Paper
2003-129, Tilburg University, Center for Economic Research.
- Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2004. "The P-value for cost sharing in minimum cost spanning tree situations," Other publications TiSEM b41d77ef-69cb-4ffa-8309-d, Tilburg University, School of Economics and Management.
- Gustavo Bergantiños & Juan Vidal-Puga, 2007. "The optimistic TU game in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(2), pages 223-239, October.
- Gustavo Bergantiños & Juan Vidal-Puga, 2004. "Additivity in cost spanning tree problems," Game Theory and Information 0405001, University Library of Munich, Germany.
- Gustavo Bergantiños & Leticia Lorenzo, 2005. "Optimal Equilibria in the Non-Cooperative Game Associated with Cost Spanning Tree Problems," Annals of Operations Research, Springer, vol. 137(1), pages 101-115, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020.
"An egalitarian approach for sharing the cost of a spanning tree,"
PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
- Giménez-Gómez, José M & Peris, Josep E & Subiza, Begoña, 2019. "An Egalitarian Approach for Sharing the Cost of a Spanning Tree," QM&ET Working Papers 19-3, University of Alicante, D. Quantitative Methods and Economic Theory.
- Giménez Gómez, José M. (José Manuel) & Peris, Josep E. & Subiza, Begoña, 2019. "An egalitarian approach for sharing the cost of a spanning tree," Working Papers 2072/376029, Universitat Rovira i Virgili, Department of Economics.
- Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023.
"A non-cooperative approach to the folk rule in minimum cost spanning tree problems,"
European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
- Hernández, Penélope & Josep E., Peris & Vidal-Puga, Juan, 2019. "A Non-Cooperative Approach to the Folk Rule in Minimum Cost Spanning Tree Problems," QM&ET Working Papers 19-5, University of Alicante, D. Quantitative Methods and Economic Theory.
- Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022.
"The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources,"
International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
- Bergantiños, Gustavo & Chun, Youngsub & Lee, Eunju & Lorenzo, Leticia, 2018. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," MPRA Paper 91523, University Library of Munich, Germany.
- Bergantiños, Gustavo & Chun, Youngsub & Lee, Eunju & Lorenzo, Leticia, 2019. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," MPRA Paper 91722, University Library of Munich, Germany.
- Bergantiños, Gustavo & Chun, Youngsub & Lee, Eunju & Lorenzo, Leticia, 2019. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," MPRA Paper 97141, University Library of Munich, Germany.
- Giménez Gómez, José M. (José Manuel) & Subiza, Begoña, 2016.
"A `solidarity' approach to the problem of sharing a network cost,"
Working Papers
2072/290742, Universitat Rovira i Virgili, Department of Economics.
- Giménez-Gómez, José M. & Peris, Josep E. & Subiza, Begoña, 2016. "A `Solidarity' Approach to the Problem of Sharing a Network Cost," QM&ET Working Papers 16-5, University of Alicante, D. Quantitative Methods and Economic Theory.
- Subiza, Begoña & Giménez, José Manuel & Peris, Josep E., 2015.
"Folk solution for simple minimum cost spanning tree problems,"
QM&ET Working Papers
15-7, University of Alicante, D. Quantitative Methods and Economic Theory.
- Subiza, Begoña & Giménez Gómez, José M. (José Manuel) & Peris, Josep E., 2015. "Folk solution for simple minimum cost spanning tree problems," Working Papers 2072/260958, Universitat Rovira i Virgili, Department of Economics.
- María Gómez-Rúa & Juan Vidal-Puga, 2017.
"A monotonic and merge-proof rule in minimum cost spanning tree situations,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
- Gómez-Rúa, María & Vidal-Puga, Juan, 2015. "A monotonic and merge-proof rule in minimum cost spanning tree situations," MPRA Paper 62923, University Library of Munich, Germany.
- Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
- Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
- Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016.
"Strategic sharing of a costly network,"
Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
- Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2012. "Strategic Sharing of a Costly Network," QM&ET Working Papers 12-10, University of Alicante, D. Quantitative Methods and Economic Theory.
- Gustavo Bergantiños & María Gómez-Rúa, 2010. "Minimum cost spanning tree problems with groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(2), pages 227-262, May.
- Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
- Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
- Dutta, Bhaskar & Mishra, Debasis, 2012.
"Minimum cost arborescences,"
Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
- Bhaskar Dutta & Debasis Mishra, 2008. "Minimum cost arborescences," Discussion Papers 08-12, Indian Statistical Institute, Delhi.
- Dutta, Bhaskar & Mishra, Debasis, 2009. "Minimum Cost Arborescences," The Warwick Economics Research Paper Series (TWERPS) 889, University of Warwick, Department of Economics.
- Dutta, Bhaskar & Mishra, Debasis, 2009. "Minimum Cost Arborescences," Economic Research Papers 271310, University of Warwick - Department of Economics.
- Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
- Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007.
"A fair rule in minimum cost spanning tree problems,"
Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
- Gustavo Bergantiños & Juan Vidal-Puga, 2005. "A fair rule in minimum cost spanning tree problems," Game Theory and Information 0504001, University Library of Munich, Germany.
- Gomez-Rua, Maria & Vidal-Puga, Juan, 2006. "No advantageous merging in minimum cost spanning tree problems," MPRA Paper 601, University Library of Munich, Germany.
- Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
- Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
- María Gómez-Rúa & Juan Vidal-Puga, 2017.
"A monotonic and merge-proof rule in minimum cost spanning tree situations,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
- Gómez-Rúa, María & Vidal-Puga, Juan, 2015. "A monotonic and merge-proof rule in minimum cost spanning tree situations," MPRA Paper 62923, University Library of Munich, Germany.
- Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
- Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
- Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
- Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Other publications TiSEM 17013f33-1d65-4294-802c-b, Tilburg University, School of Economics and Management.
- Ciftci, B.B. & Tijs, S.H., 2007. "A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems," Discussion Paper 2007-89, Tilburg University, Center for Economic Research.
- Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
- Ciftci, B.B. & Tijs, S.H., 2007. "A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems," Other publications TiSEM 1b5a01d9-e7e4-43da-acf0-7, Tilburg University, School of Economics and Management.
More about this item
Keywords
Minimum cost spanning tree; properties;JEL classification:
- C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:aucocz:au2008_251. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lenka Stastna (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.