IDEAS home Printed from https://ideas.repec.org/a/fau/aucocz/au2008_251.html
   My bibliography  Save this article

On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems

Author

Abstract

We consider four cost allocation rules in minimum cost spanning tree problems. These rules were introduced by Bird (1976), Dutta and Kar (2004), Kar (2002), and Feltkamp, Tijs and Muto (1994), respectively. We give a list of desirable properties and we study which properties are satisfied by these rules.

Suggested Citation

  • Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.
  • Handle: RePEc:fau:aucocz:au2008_251
    as

    Download full text from publisher

    File URL: http://auco.fsv.cuni.cz/storage/49_2008_03_251.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    2. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    3. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    4. Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(1), pages 47-61, April.
    5. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    6. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Discussion Paper 2003-129, Tilburg University, Center for Economic Research.
    7. Gustavo Bergantiños & Juan Vidal-Puga, 2007. "The optimistic TU game in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(2), pages 223-239, October.
    8. Gustavo Bergantiños & Juan Vidal-Puga, 2004. "Additivity in cost spanning tree problems," Game Theory and Information 0405001, EconWPA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subiza, Begoña & Giménez, José Manuel & Peris, Josep E., 2015. "Folk solution for simple minimum cost spanning tree problems," QM&ET Working Papers 15-7, University of Alicante, D. Quantitative Methods and Economic Theory.
    2. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    3. Giménez-Gómez, José M. & Peris, Josep E. & Subiza, Begoña, 2016. "A `Solidarity' Approach to the Problem of Sharing a Network Cost," QM&ET Working Papers 16-5, University of Alicante, D. Quantitative Methods and Economic Theory.
    4. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.

    More about this item

    Keywords

    Minimum cost spanning tree; properties;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:aucocz:au2008_251. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lenka Stastna). General contact details of provider: http://edirc.repec.org/data/icunicz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.