IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/de0e437c-1588-469d-a2ff-af466780f60a.html
   My bibliography  Save this paper

The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations

Author

Listed:
  • Brânzei, R.

    (Tilburg University, Center For Economic Research)

  • Moretti, S.
  • Norde, H.W.

    (Tilburg University, Center For Economic Research)

  • Tijs, S.H.

    (Tilburg University, Center For Economic Research)

Abstract

The aim of this paper is to introduce and axiomatically characterize the P-value as a rule to solve the cost sharing problem in minimum cost spanning tree (mcst) situations.The P-value is related to the Kruskal algorithm for finding an mcst.Moreover, the P-value leads to a core allocation of the corresponding mcst game, and when applied also to the mcst subsituations it delivers a population monotonic allocation scheme.A conewise positive linearity property is one of the basic ingredients of an axiomatic characterization of the P-value.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of t
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Discussion Paper 2003-129, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:de0e437c-1588-469d-a2ff-af466780f60a
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/599654/129.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    2. Norde, Henk & Moretti, Stefano & Tijs, Stef, 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 154(1), pages 84-97, April.
    3. Stefano Moretti & Henk Norde & Kim Pham Do & Stef Tijs, 2002. "Connection problems in mountains and monotonic allocation schemes," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 83-99, June.
    4. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    5. Pham Do, K.H. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2002. "Connection problems in mountains and monotonic cost allocation schemes," Other publications TiSEM 98019ba4-13a2-470b-9850-f, Tilburg University, School of Economics and Management.
    6. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    7. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    8. Kuipers, Jeroen, 1993. "On the Core of Information Graph Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 339-350.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    costs; games; allocation; population;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:de0e437c-1588-469d-a2ff-af466780f60a. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman). General contact details of provider: http://center.uvt.nl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.