IDEAS home Printed from https://ideas.repec.org/r/tiu/tiucen/de0e437c-1588-469d-a2ff-af466780f60a.html
   My bibliography  Save this item

The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Emre Doğan, 2016. "Absence-proofness: Group stability beyond the core," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(3), pages 601-616, August.
  2. Bergantiños, Gustavo & Lorenzo, Leticia, 2019. "Cost additive rules in minimum cost spanning tree problems with multiple sources," MPRA Paper 96937, University Library of Munich, Germany.
  3. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
  4. Bergantiños, Gustavo & Chun, Youngsub & Lee, Eunju & Lorenzo, Leticia, 2018. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," MPRA Paper 91523, University Library of Munich, Germany.
  5. Kusunoki, Yoshifumi & Tanino, Tetsuzo, 2017. "Investigation on irreducible cost vectors in minimum cost arborescence problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 214-221.
  6. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
  7. Tijs, S.H. & Moretti, S. & Brânzei, R. & Norde, H.W., 2005. "The Bird Core for Minimum Cost Spanning Tree problems Revisited : Monotonicity and Additivity Aspects," Other publications TiSEM 530f2c60-024d-4f3e-b724-1, Tilburg University, School of Economics and Management.
  8. repec:wsi:jeapmx:v:20:y:2018:i:04:n:s021919891850007x is not listed on IDEAS
  9. Stefano Moretti & Stef Tijs & Rodica Branzei & Henk Norde, 2009. "Cost allocation protocols for supply contract design in network situations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 181-202, March.
  10. Gustavo Bergantiños & Anirban Kar, 2008. "Obligation Rules," Working papers 167, Centre for Development Economics, Delhi School of Economics.
  11. Tijs, S.H. & Moretti, S. & Brânzei, R. & Norde, H.W., 2005. "The Bird Core for Minimum Cost Spanning Tree problems Revisited : Monotonicity and Additivity Aspects," Discussion Paper 2005-3, Tilburg University, Center for Economic Research.
  12. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
  13. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
  14. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
  15. Quant, Marieke & Borm, Peter & Reijnierse, Hans, 2006. "Congestion network problems and related games," European Journal of Operational Research, Elsevier, vol. 172(3), pages 919-930, August.
  16. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Other publications TiSEM 7ac3a323-f736-46a6-b568-c, Tilburg University, School of Economics and Management.
  17. Christian Trudeau, 2014. "Linking the Kar and folk solutions through a problem separation property," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 845-870, November.
  18. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
  19. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
  20. repec:spr:compst:v:69:y:2009:i:1:p:181-202 is not listed on IDEAS
  21. repec:dau:papers:123456789/4922 is not listed on IDEAS
  22. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
  23. Ciftci, B.B. & Tijs, S.H., 2007. "A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems," Discussion Paper 2007-89, Tilburg University, Center for Economic Research.
  24. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
  25. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Discussion Paper 2008-64, Tilburg University, Center for Economic Research.
  26. Bergantiños, G. & Navarro-Ramos, A., 2019. "The folk rule through a painting procedure for minimum cost spanning tree problems with multiple sources," Mathematical Social Sciences, Elsevier, vol. 99(C), pages 43-48.
  27. Jens Hougaard & Hervé Moulin & Lars Østerdal, 2010. "Decentralized pricing in minimum cost spanning trees," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 293-306, August.
  28. Anna Bogomolnaia & Ron Holzman & Hervé Moulin, 2010. "Sharing the Cost of a Capacity Network," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 173-192, February.
  29. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Merge-proofness in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 309-329, May.
  30. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
  31. Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.
  32. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
  33. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
  34. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
  35. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
  36. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
  37. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.