IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v151y2025icp162-182.html
   My bibliography  Save this article

Comparative statics of minimum-cost-spanning-tree games

Author

Listed:
  • Tan, Zhibin
  • Zhigang, Cao
  • Zou, Zhengxing

Abstract

We conduct a comparative static analysis for the cores of minimum-cost-spanning-tree games. We introduce a new category of cover, termed as the matrix-exact cover. Our investigation underscores the pivotal role played by the matrix-exact cover, in conjunction with the classical irreducible cost matrix. (i) When edge costs experience a decrease, the core remains invariant as long as the costs of all edges are weakly above their respective matrix-exact covers. (ii) When the costs of certain edges do fall below the matrix-exact cover, and simultaneously all edge costs remain weakly above the irreducible costs, the core contracts, forming a proper subset of the original core. (iii) Furthermore, should the costs of some edges continue to decrease and fall below the irreducible costs, the core shifts away from the original core.

Suggested Citation

  • Tan, Zhibin & Zhigang, Cao & Zou, Zhengxing, 2025. "Comparative statics of minimum-cost-spanning-tree games," Games and Economic Behavior, Elsevier, vol. 151(C), pages 162-182.
  • Handle: RePEc:eee:gamebe:v:151:y:2025:i:c:p:162-182
    DOI: 10.1016/j.geb.2025.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825625000405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2025.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
    2. Hougaard, Jens Leth & Tvede, Mich, 2015. "Minimum cost connection networks: Truth-telling and implementation," Journal of Economic Theory, Elsevier, vol. 157(C), pages 76-99.
    3. Norde, Henk & Moretti, Stefano & Tijs, Stef, 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 154(1), pages 84-97, April.
    4. Péter Csóka & P. Herings & László Kóczy, 2011. "Balancedness conditions for exact games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 41-52, August.
    5. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Other publications TiSEM 56ea8c64-a05f-4b3f-ab61-9, Tilburg University, School of Economics and Management.
    6. Lohmann, E. & Borm, P. & Herings, P.J.J., 2012. "Minimal exact balancedness," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 127-135.
    7. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    8. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    9. Trudeau, Christian, 2014. "Minimum cost spanning tree problems with indifferent agents," Games and Economic Behavior, Elsevier, vol. 84(C), pages 137-151.
    10. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    11. Ichiishi, T, 1990. "Comparative Cooperative Game Theory," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 139-152.
    12. Núñez, Marina & Vidal-Puga, Juan, 2022. "Stable cores in information graph games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 353-367.
    13. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    14. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    15. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    16. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    17. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    18. ICHIISHI, Tatsuro, 1990. "Comparative cooperative game theory," LIDAM Reprints CORE 903, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    20. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
    21. Kuipers, Jeroen, 1993. "On the Core of Information Graph Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 339-350.
    22. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    23. Martínez-de-Albéniz, F. Javier & Núñez, Marina & Rafels, Carles, 2011. "Assignment markets with the same core," Games and Economic Behavior, Elsevier, vol. 73(2), pages 553-563.
    24. T. E. S. Raghavan & Tamás Solymosi, 2001. "Assignment games with stable core," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 177-185.
    25. Changyong Han & Bawoo Kim & Youngsub Chun, 2024. "Demand operators and the Dutta–Kar rule for minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(1), pages 101-124, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    2. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    3. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    4. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    5. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    6. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    7. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
    8. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    9. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
    10. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    11. Emre Doğan & İbrahim Barış Esmerok, 2024. "An egalitarian solution to minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(1), pages 127-141, March.
    12. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    13. Christian Trudeau, 2014. "Linking the Kar and folk solutions through a problem separation property," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 845-870, November.
    14. Changyong Han & Bawoo Kim & Youngsub Chun, 2024. "Demand operators and the Dutta–Kar rule for minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(1), pages 101-124, August.
    15. Liu, Siwen & Borm, Peter & Norde, Henk, 2023. "Induced Rules for Minimum Cost Spanning Tree Problems : Towards Merge-Proofness and Coalitional Stability," Discussion Paper 2023-021, Tilburg University, Center for Economic Research.
    16. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    17. José-Manuel Giménez-Gómez & Josep E. Peris & Begoña Subiza, 2022. "A claims problem approach to the cost allocation of a minimum cost spanning tree," Operational Research, Springer, vol. 22(3), pages 2785-2801, July.
    18. Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Discussion Paper 2023-009, Tilburg University, Center for Economic Research.
    19. Eric Bahel & Christian Trudeau, 2016. "From spanning trees to arborescences: new and extended cost sharing solutions," Working Papers 1601, University of Windsor, Department of Economics.
    20. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:151:y:2025:i:c:p:162-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.