IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i3d10.1007_s12351-021-00632-7.html
   My bibliography  Save this article

A claims problem approach to the cost allocation of a minimum cost spanning tree

Author

Listed:
  • José-Manuel Giménez-Gómez

    (Universitat Rovira i Virgili, Departament d’Economia and ECO-SOS)

  • Josep E. Peris

    (Universitat d’Alacant, MQiTE and IUDESP)

  • Begoña Subiza

    (Universitat d’Alacant, MQiTE and IUDESP)

Abstract

We propose to allocate the cost of a minimum cost spanning tree by defining a claims problem and using claims rules, then providing easy and intuitive ways to distribute this cost. Depending on the starting point that we consider, we define two models. On the one hand, the benefit-sharing model considers individuals’ costs to the source as the starting point, and then the benefit of building the efficient tree is shared by the agents. On the other hand, the costs-sharing model starts from the individuals’ minimum connection costs (the cheapest connection they can use), and the additional cost, if any, is then allocated. As we prove, both approaches provide the same family of allocations for every minimum cost spanning tree problem. These models can be understood as a central planner who decides the best way to connect the agents (the efficient tree) and also establishes the amount each agent has to pay. In so doing, the central planner takes into account the maximum and minimum amount they should pay and some equity criteria given by a particular (claims) rule. We analyze some properties of this family of cost allocations, specially focusing in coalitional stability (core selection), a central concern in the literature on cost allocation.

Suggested Citation

  • José-Manuel Giménez-Gómez & Josep E. Peris & Begoña Subiza, 2022. "A claims problem approach to the cost allocation of a minimum cost spanning tree," Operational Research, Springer, vol. 22(3), pages 2785-2801, July.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-021-00632-7
    DOI: 10.1007/s12351-021-00632-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-021-00632-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-021-00632-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    2. Robert J. Aumann, 2025. "Game-Theoretic Analysis of a Bankruptcy Problem from the Talmud," World Scientific Book Chapters, in: SELECTED CONTRIBUTIONS TO GAME THEORY, chapter 9, pages 219-242, World Scientific Publishing Co. Pte. Ltd..
    3. Estévez-Fernández, Arantza & Reijnierse, Hans, 2014. "On the core of cost-revenue games: Minimum cost spanning tree games with revenues," European Journal of Operational Research, Elsevier, vol. 237(2), pages 606-616.
    4. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    5. Thomson,William, 2019. "How to Divide When There Isn't Enough," Cambridge Books, Cambridge University Press, number 9781107194625, January.
    6. Moulin, Herve & Shenker, Scott, 1992. "Serial Cost Sharing," Econometrica, Econometric Society, vol. 60(5), pages 1009-1037, September.
    7. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    8. Thomson,William, 2019. "How to Divide When There Isn't Enough," Cambridge Books, Cambridge University Press, number 9781316646441, January.
    9. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    10. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    11. Kuipers, Jeroen, 1993. "On the Core of Information Graph Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 339-350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    2. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    3. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    4. Trudeau, Christian, 2014. "Minimum cost spanning tree problems with indifferent agents," Games and Economic Behavior, Elsevier, vol. 84(C), pages 137-151.
    5. Tan, Zhibin & Zhigang, Cao & Zou, Zhengxing, 2025. "Comparative statics of minimum-cost-spanning-tree games," Games and Economic Behavior, Elsevier, vol. 151(C), pages 162-182.
    6. Changyong Han & Bawoo Kim & Youngsub Chun, 2024. "Demand operators and the Dutta–Kar rule for minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(1), pages 101-124, August.
    7. Begoña Subiza & Josep E. Peris, 2021. "Sharing the cost of maximum quality optimal spanning trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 470-493, July.
    8. Christian Trudeau, 2014. "Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 941-957, April.
    9. José-Manuel Giménez-Gómez & Begoña Subiza & Josep Peris, 2014. "Conflicting Claims Problem Associated with Cost Sharing of a Network," QM&ET Working Papers 14-3, University of Alicante, D. Quantitative Methods and Economic Theory.
    10. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    11. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    12. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    13. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    14. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    15. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    16. Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.
    17. Emre Doğan & İbrahim Barış Esmerok, 2024. "An egalitarian solution to minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(1), pages 127-141, March.
    18. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    19. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    20. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:3:d:10.1007_s12351-021-00632-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.