IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20120101.html
   My bibliography  Save this paper

On the Core of Cost-Revenue Games: Minimum Cost Spanning Tree Games with Revenues

Author

Listed:
  • Arantza Estevez-Fernandez

    (VU University Amsterdam)

  • Hans Reijnierse

    (CentER, Tilburg University)

Abstract

This discussion paper led to an article in 'European Journal of Operational Research' , (2014), 237, 606-616. In this paper, we analyze cost sharing problems arising from a general service by explicitly taking into account the generated revenues. To this cost-revenue sharing problem, we associate a cooperative game with transferable utility, called cost-revenue game. By considering cooperation among the agents using the general service, the value of a coalition is defined as the maximum net profit that the coalition may obtain by means of cooperation. As a result, a coalition may profit from not allowing all its members to get the service that generates the revenues. We focus on the study of the core of cost-revenue games. Under the assumption that cooperation among the members of the grand coalition grants the use of the service under consideration to all its members, it is shown that a cost-revenue game has a non-empty core for any vector of revenues if, and only if, the dual game of the cost game has a large core. Using this result, we investigate minimum cost spanning tree games with revenues. We show that if every connection cost can take only two values (low or high cost), then, the corresponding minimum cost spanning tree game with revenues has a non-empty core. Furthermore, we provide an example of a minimum cost spanning tree game with revenues with an empty core where every connection cost can take only one of three values (low, medium, or high cost).

Suggested Citation

  • Arantza Estevez-Fernandez & Hans Reijnierse, 2012. "On the Core of Cost-Revenue Games: Minimum Cost Spanning Tree Games with Revenues," Tinbergen Institute Discussion Papers 12-101/II, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20120101
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/12101.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moretti, S., 2008. "Cost allocation problems arising from connection situations in an interactive cooperative setting," Other publications TiSEM 2d63e0bf-18b7-4695-bdee-e, Tilburg University, School of Economics and Management.
    2. Norde, Henk & Moretti, Stefano & Tijs, Stef, 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 154(1), pages 84-97, April.
    3. Arantza Estévez-Fernández & Peter Borm & Marc Meertens & Hans Reijnierse, 2009. "On the core of routing games with revenues," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 291-304, June.
    4. Jeroen Suijs & Peter Borm & Herbert Hamers & Marieke Quant & Maurice Koster, 2005. "Communication and Cooperation in Public Network Situations," Annals of Operations Research, Springer, vol. 137(1), pages 117-140, July.
    5. Rodica Brânzei & Elena Iñarra & Stef Tijs & José Zarzuelo, 2006. "A Simple Algorithm for the Nucleolus of Airport Profit Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(2), pages 259-272, August.
    6. Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006. "Obligation rules for minimum cost spanning tree situations and their monotonicity properties," European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
    7. M. Meertens & J. Potters, 2006. "The nucleolus of trees with revenues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 363-382, October.
    8. Daniel Granot & Michael Maschler, 1998. "Spanning network games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(4), pages 467-500.
    9. repec:dau:papers:123456789/4874 is not listed on IDEAS
    10. Potters, J.A.M. & Curiel, I. & Tijs, S.H., 1992. "Traveling salesman games," Other publications TiSEM 0dd4cf3d-25fa-4179-80f6-6, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José-Manuel Giménez-Gómez & Josep E. Peris & Begoña Subiza, 2022. "A claims problem approach to the cost allocation of a minimum cost spanning tree," Operational Research, Springer, vol. 22(3), pages 2785-2801, July.
    2. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    3. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    4. Panova, Elena, 2023. "Sharing cost of network among users with differentiated willingness to pay," Games and Economic Behavior, Elsevier, vol. 142(C), pages 666-689.
    5. Subiza, Begoña & Giménez-Gómez, José Manuel & Peris, Josep E., 2024. "Non-Emptiness of the Core of MCST Games with Revenues: a Necessary and Some Sufficient Conditions," QM&ET Working Papers 24-4, University of Alicante, D. Quantitative Methods and Economic Theory.
    6. Subiza, Begoña & Giménez, José Manuel & Peris, Josep E., 2015. "Folk solution for simple minimum cost spanning tree problems," QM&ET Working Papers 15-7, University of Alicante, D. Quantitative Methods and Economic Theory.
    7. Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Discussion Paper 2023-009, Tilburg University, Center for Economic Research.
    8. Subiza, Begoña & Jiménez-Gómez, José Manuel & Peris, Josep E, 2024. "Minimum Cost Spanning Tree Games with Revenues: “Stable” Payoffs when the Core is Empty," QM&ET Working Papers 24-5, University of Alicante, D. Quantitative Methods and Economic Theory.
    9. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    10. Luo, Chunlin & Zhou, Xiaoyang & Lev, Benjamin, 2022. "Core, shapley value, nucleolus and nash bargaining solution: A Survey of recent developments and applications in operations management," Omega, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arantza Estévez-Fernández & Peter Borm & Marc Meertens & Hans Reijnierse, 2009. "On the core of routing games with revenues," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 291-304, June.
    2. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    3. Gustavo Bergantiños & Anirban Kar, 2008. "Obligation Rules," Working papers 167, Centre for Development Economics, Delhi School of Economics.
    4. Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
    5. Gomez-Rua, Maria & Vidal-Puga, Juan, 2006. "No advantageous merging in minimum cost spanning tree problems," MPRA Paper 601, University Library of Munich, Germany.
    6. Tijs, S.H. & Moretti, S. & Brânzei, R. & Norde, H.W., 2005. "The Bird Core for Minimum Cost Spanning Tree problems Revisited : Monotonicity and Additivity Aspects," Discussion Paper 2005-3, Tilburg University, Center for Economic Research.
    7. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
    8. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
    9. Tijs, S.H. & Moretti, S. & Brânzei, R. & Norde, H.W., 2005. "The Bird Core for Minimum Cost Spanning Tree problems Revisited : Monotonicity and Additivity Aspects," Other publications TiSEM 530f2c60-024d-4f3e-b724-1, Tilburg University, School of Economics and Management.
    10. Ciftci, B.B. & Tijs, S.H., 2007. "A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems," Other publications TiSEM 1b5a01d9-e7e4-43da-acf0-7, Tilburg University, School of Economics and Management.
    11. Bergantiños, G. & Navarro-Ramos, A., 2019. "The folk rule through a painting procedure for minimum cost spanning tree problems with multiple sources," Mathematical Social Sciences, Elsevier, vol. 99(C), pages 43-48.
    12. Tijs, S.H. & Brânzei, R., 2004. "Cases in Cooperation and Cutting the Cake," Discussion Paper 2004-108, Tilburg University, Center for Economic Research.
    13. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    14. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Other publications TiSEM 7ac3a323-f736-46a6-b568-c, Tilburg University, School of Economics and Management.
    15. Gustavo Bergantiños & Leticia Lorenzo & Silvia Lorenzo-Freire, 2010. "The family of cost monotonic and cost additive rules in minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 695-710, April.
    16. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    17. Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
    18. Stefano Moretti & Henk Norde, 2022. "Some new results on generalized additive games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 87-118, March.
    19. Gustavo Bergantiños & Leticia Lorenzo, 2021. "Cost additive rules in minimum cost spanning tree problems with multiple sources," Annals of Operations Research, Springer, vol. 301(1), pages 5-15, June.
    20. Panova, Elena, 2023. "Sharing cost of network among users with differentiated willingness to pay," Games and Economic Behavior, Elsevier, vol. 142(C), pages 666-689.

    More about this item

    Keywords

    Cost-revenue allocation problem; cooperative game; core; minimum cost spanning tree problem;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20120101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.