IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01612092.html

The proportional Shapley value and applications

Author

Listed:
  • Sylvain Béal

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Éric Rémila

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

  • Sylvain Ferrières

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

Abstract

We study a non linear weighted Shapley value (Shapley, 1953b) for cooperative games with transferable utility, in which the weights are endogenously given by the players' stand-alone worths. We call it the proportional Shapley value since it distributes the Harsanyi dividend (Harsanyi, 1959) of all coalitions in proportion to the stand-alone worths of its members. We show that this value recommends appealing payoff distributions in several applications among which a land production economy introduced in Shapley and Shubik (1967). Although the proportional Shapley value does not satisfy the classical axioms of linearity and consistency (Hart and Mas-Colell, 1989), the main results provide comparable axiomatic characterizations of our value and the Shapley value by means of weak versions of these two axioms. These characterizations rely on another result, which states that there exists a unique extension of a value defined on games that are additive except, possibly, for the grand coalition to the set of all games in the much larger class we consider. Moreover, our value inherits several well-known properties of the weighted Shapley values.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sylvain Béal & Éric Rémila & Philippe Solal & Sylvain Ferrières, 2018. "The proportional Shapley value and applications," Post-Print halshs-01612092, HAL.
  • Handle: RePEc:hal:journl:halshs-01612092
    DOI: 10.1016/j.geb.2017.08.010
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01612092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.