IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Egalitarianism in convex fuzzy games

  • Branzei,R.
  • Dimitrov,D.

    (Institute of Mathematical Economics, Bielefeld University)

  • Tijs,S.

In this paper the egalitarian solution for convex cooperative fuzzy games is introduced.The classical Dutta-Ray algorithm for finding the constrained egalitarian solution for convex crisp games is adjusted to provide the egalitarian solution of a convex fuzzy game.This adjusted algorithm is also a finite algorithm, because the convexity of a fuzzy game implies in each step the existence of a maximal element which corresponds to a crisp coalition.For arbitrary fuzzy games the equal division core is introduced.It turns out that both the equal division core and the egalitariansolution of a convex fuzzy game coincide with the corresponding equal division core and the constrained egalitarian solution, respectively, of the related crisp game.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Center for Mathematical Economics, Bielefeld University in its series Center for Mathematical Economics Working Papers with number 337.

in new window

Date of creation: 2002
Date of revision:
Handle: RePEc:bie:wpaper:337
Contact details of provider: Postal: Postfach 10 01 31, 33501 Bielefeld
Phone: +49(0)521-106-4907
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Branzei,R. & Dimitrov,D. & Tijs,S., 2002. "Convex fuzzy games and participation monotonic allocation schemes," Center for Mathematical Economics Working Papers 332, Center for Mathematical Economics, Bielefeld University.
  2. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Hypercubes and compromise values for cooperative fuzzy games," European Journal of Operational Research, Elsevier, vol. 155(3), pages 733-740, June.
  3. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, I., 2000. "The egalitarian solution for convex games : Some characterizations," Other publications TiSEM 614b77cd-430c-4048-856f-8, Tilburg University, School of Economics and Management.
  4. Anindya Bhattacharya, 2004. "On the equal division core," Social Choice and Welfare, Springer, vol. 22(2), pages 391-399, 04.
  5. Dutta, B, 1990. "The Egalitarian Solution and Reduced Game Properties in Convex Games," International Journal of Game Theory, Springer, vol. 19(2), pages 153-69.
  6. Javier Arin & Elena Inarra, 2001. "Egalitarian solutions in the core," International Journal of Game Theory, Springer, vol. 30(2), pages 187-193.
  7. Jens Leth Hougaard & Lars Thorlund-Petersen & Bezalel Peleg, 2001. "On the set of Lorenz-maximal imputations in the core of a balanced game," International Journal of Game Theory, Springer, vol. 30(2), pages 147-165.
  8. Toru Hokari, 2000. "Population monotonic solutions on convex games," International Journal of Game Theory, Springer, vol. 29(3), pages 327-338.
  9. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-35, May.
  10. Tsurumi, Masayo & Tanino, Tetsuzo & Inuiguchi, Masahiro, 2001. "A Shapley function on a class of cooperative fuzzy games," European Journal of Operational Research, Elsevier, vol. 129(3), pages 596-618, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:337. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bettina Weingarten)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.