IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Convex multi-choice games: Characterizations and monotonic allocation schemes

  • Branzei, R.
  • Tijs, S.
  • Zarzuelo, J.

This paper focuses on new characterizations of convex multi-choice games using the notions of exactness and superadditivity. Furthermore, level-increase monotonic allocation schemes (limas) on the class of convex multi-choice games are introduced and studied. It turns out that each element of the Weber set of such a game is extendable to a limas, and the (total) Shapley value for multi-choice games generates a limas for each convex multi-choice game.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00775-3
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 198 (2009)
Issue (Month): 2 (October)
Pages: 571-575

as
in new window

Handle: RePEc:eee:ejores:v:198:y:2009:i:2:p:571-575
Contact details of provider: Web page: http://www.elsevier.com/locate/eor

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Klijn, F. & Slikker, M. & Zarzuelo, J., 1997. "Characterizations of a Multi-Choice Value," Research Memorandum 756, Tilburg University, School of Economics and Management.
  2. repec:spr:compst:v:65:y:2007:i:1:p:153-167 is not listed on IDEAS
  3. Michel Grabisch & Lijue Xie, 2007. "A new approach to the core and Weber set of multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00267933, HAL.
  4. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the Shapley value: a new approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00178916, HAL.
  5. repec:hal:journl:halshs-00267933 is not listed on IDEAS
  6. Esther GutiÊrrez & Emilio Calvo & Juan Carlos Santos, 2000. "The multichoice consistent value," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(2), pages 177-188.
  7. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Egalitarianism in Multi-Choice Games," Discussion Paper 2007-55, Tilburg University, Center for Economic Research.
  8. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-66.
  9. repec:hal:journl:halshs-00178916 is not listed on IDEAS
  10. Hans Peters & Horst Zank, 2005. "The Egalitarian Solution for Multichoice Games," Annals of Operations Research, Springer, vol. 137(1), pages 399-409, July.
  11. Toru Hokari, 2000. "Population monotonic solutions on convex games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(3), pages 327-338.
  12. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2004. "Egalitarianism in convex fuzzy games," Other publications TiSEM feab7e25-2f43-47e3-9658-b, Tilburg University, School of Economics and Management.
  13. Biswas, A. K. & Parthasarathy, T. & Potters, J. A. M. & Voorneveld, M., 1999. "Large Cores and Exactness," Games and Economic Behavior, Elsevier, vol. 28(1), pages 1-12, July.
  14. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-35, May.
  15. Calvo, Emilio & Santos, Juan Carlos, 2000. "A value for multichoice games," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 341-354, November.
  16. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
  17. repec:spr:compst:v:66:y:2007:i:3:p:491-512 is not listed on IDEAS
  18. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2004. "A New Characterization of Convex Games," Discussion Paper 2004-109, Tilburg University, Center for Economic Research.
  19. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
  20. Yaron Azrieli & Ehud Lehrer, 2007. "Extendable Cooperative Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(6), pages 1069-1078, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:198:y:2009:i:2:p:571-575. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.