IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Convex and Exact Games with Non-transferable Utility

  • Péter Csóka


    (Department of Finance, Corvinus University of Budapest)

  • P. Jean-Jacques Herings


    (Department of Economics, Maastricht University)

  • László Á. Kóczy


    (Keleti Faculty of Economics, Budapest Tech and Department of Economics, Maastricht University)

  • Miklós Pintér


    (Department of Mathematics, Corvinus University of Budapest)

We generalize exactness to games with non-transferable utility (NTU). In an exact game for each coalition there is a core allocation on the boundary of its payoff set. Convex games with transferable utility are well-known to be exact. We study five generalizations of convexity in the NTU setting. We show that each of ordinal, coalition merge, individual merge and marginal convexity can be unified under NTU exactness. We provide an example of a cardinally convex game which is not NTU exact. Finally, we relate the classes of \Pi-balanced, totally \Pi-balanced, NTU exact, totally NTU exact, ordinally convex, cardinally convex, coalition merge convex, individual merge convex and marginal convex games to one another.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Manuscript, 2009
Download Restriction: no

Paper provided by Óbuda University, Keleti Faculty of Business and Management in its series Working Paper Series with number 0904.

in new window

Length: 18 pages
Date of creation: Jun 2009
Date of revision:
Handle: RePEc:pkk:wpaper:0904
Contact details of provider: Postal: 1084 Budapest, Tavaszmezö u. 15-17
Phone: +36-1-6665208
Fax: +36-1-6665209
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Herings P. Jean-Jacques & Predtetchinski Arkadi, 2002. "A Necessary and Sufficient Condition for Non--emptiness of the Core of a Non--transferable Utility Game," Research Memorandum 016, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  2. Pulido, Manuel A. & Sánchez-Soriano, Joaquín, 2009. "On the core, the Weber set and convexity in games with a priori unions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 468-475, March.
  3. Curiel, Imma & Pederzoli, Giorgio & Tijs, Stef, 1989. "Sequencing games," European Journal of Operational Research, Elsevier, vol. 40(3), pages 344-351, June.
  4. Csóka Péter & Herings P. Jean-Jacques & Kóczy László Á, 2007. "Stable Allocations of Risk," Research Memorandum 040, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  5. Demange, Gabrielle, 1987. "Nonmanipulable Cores," Econometrica, Econometric Society, vol. 55(5), pages 1057-74, September.
  6. Casas-Mendez, Balbina & Garcia-Jurado, Ignacio & van den Nouweland, Anne & Vazquez-Brage, Margarita, 2003. "An extension of the [tau]-value to games with coalition structures," European Journal of Operational Research, Elsevier, vol. 148(3), pages 494-513, August.
  7. Granot, D, et al, 1996. "The Kernel/Nucleolus of a Standard Tree Game," International Journal of Game Theory, Springer, vol. 25(2), pages 219-44.
  8. S. C. Littlechild & G. Owen, 1973. "A Simple Expression for the Shapley Value in a Special Case," Management Science, INFORMS, vol. 20(3), pages 370-372, November.
  9. Peleg, Bezalel, 1986. "A proof that the core of an ordinal convex game is a von Neumann-Morgenstern solution," Mathematical Social Sciences, Elsevier, vol. 11(1), pages 83-87, February.
  10. Peleg, Bezalel, 2002. "Game-theoretic analysis of voting in committees," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 8, pages 395-423 Elsevier.
  11. Ruud Hendrickx & Judith Timmer & Peter Borm, 2002. "A note on NTU convexity," International Journal of Game Theory, Springer, vol. 31(1), pages 29-37.
  12. Hendrickx, R.L.P. & Borm, P.E.M. & Timmer, J.B., 2000. "On Convexity for NTU-Games," Discussion Paper 2000-108, Tilburg University, Center for Economic Research.
  13. Ichiishi, Tatsuro, 1981. "Super-modularity: Applications to convex games and to the greedy algorithm for LP," Journal of Economic Theory, Elsevier, vol. 25(2), pages 283-286, October.
  14. Biswas, A. K. & Parthasarathy, T. & Potters, J. A. M. & Voorneveld, M., 1999. "Large Cores and Exactness," Games and Economic Behavior, Elsevier, vol. 28(1), pages 1-12, July.
  15. repec:cup:cbooks:9780521414449 is not listed on IDEAS
  16. Curiel, I. & Pederzoli, G. & Tijs, S.H., 1989. "Sequencing games," Other publications TiSEM cd695be5-0f54-4548-a952-2, Tilburg University, School of Economics and Management.
  17. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
  18. Branzei, R. & Tijs, S. & Zarzuelo, J., 2009. "Convex multi-choice games: Characterizations and monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 198(2), pages 571-575, October.
  19. Calleja, Pedro & Borm, Peter & Hendrickx, Ruud, 2005. "Multi-issue allocation situations," European Journal of Operational Research, Elsevier, vol. 164(3), pages 730-747, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pkk:wpaper:0904. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alexandra Vécsey)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.