IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/b08077.html

The core of games on distributive lattices: how to share benefits in a hierarchy

Author

Abstract

Finding a solution concept is one of the central problems in cooperative game theory, and the notion of core is the most popular solution concept since it is based on some rationality condition. In many real situations, not all possible coalitions can form, so that classical TU-games cannot be used. An interesting case is when possible coalitions are defined through a partial ordering of the players (or hierarchy). Then feasible coalitions correspond to teams of players, that is, one or several players with all their subordinates. In these situations, it is not obvious to define a suitable notion of core, reflecting the team structure, and previous attempts are not satisfactory in this respect. We propose a new notion of core, which imposes efficiency of the allocation at each level of the hierarchy, and answers the problem of sharing benefits in a hierarchy. We show that the core we defined has properties very close to the classical case, with respect to marginal vectors, the Weber set, and balancedness

Suggested Citation

  • Michel Grabisch & Lijue Xie, 2008. "The core of games on distributive lattices: how to share benefits in a hierarchy," Documents de travail du Centre d'Economie de la Sorbonne b08077, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2009.
  • Handle: RePEc:mse:cesdoc:b08077
    DOI: 10.1007/s00186-010-0341-2
    as

    Download full text from publisher

    File URL: https://hal.science/halshs-00344802
    Download Restriction: no

    File URL: https://doi.org/10.1007/s00186-010-0341-2
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s00186-010-0341-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    2. Grabisch, Michel & Sudhölter, Peter, 2014. "On the restricted cores and the bounded core of games on distributive lattices," European Journal of Operational Research, Elsevier, vol. 235(3), pages 709-717.
    3. Michel Grabisch & Lijue Xie, 2011. "The restricted core of games on distributive lattices: how to share benefits in a hierarchy," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 189-208, April.
    4. repec:hal:pseose:halshs-00950109 is not listed on IDEAS
    5. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:b08077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.