IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

The core of games on ordered structures and graphs

  • Michel Grabisch


    (Axe Economie mathématique et jeux - CES - Centre d'économie de la Sorbonne - UP1 - Université Panthéon-Sorbonne - CNRS)

In cooperative games, the core is the most popular solution concept, and its properties are well known. In the classical setting of cooperative games, it is generally assumed that all coalitions can form, i.e., they are all feasible. In many situations, this assumption is too strong and one has to deal with some unfeasible coalitions. Defining a game on a subcollection of the power set of the set of players has many implications on the mathematical structure of the core, depending on the precise structure of the subcollection of feasible coalitions. Many authors have contributed to this topic, and we give a unified view of these different results.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by HAL in its series Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) with number halshs-00445171.

in new window

Date of creation: Oct 2009
Date of revision:
Handle: RePEc:hal:cesptp:halshs-00445171
Note: View the original document on HAL open archive server:
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," PSE - Labex "OSE-Ouvrir la Science Economique" hal-00803233, HAL.
  2. Michel Grabisch & Lijue Xie, 2011. "The restricted core of games on distributive lattices: how to share benefits in a hierarchy," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00583868, HAL.
  3. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J., 2008. "The average tree solution for cycle-free graph games," Other publications TiSEM f243609c-2847-415f-ae52-1, Tilburg University, School of Economics and Management.
  4. Derks, Jean & Peters, Hans, 1998. "Orderings, excess functions, and the nucleolus," Mathematical Social Sciences, Elsevier, vol. 36(2), pages 175-182, September.
  5. Ulrich Faigle & Michel Grabisch & Maximilian Heyne, 2010. "Monge extensions of cooperation and communication structures," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00625336, HAL.
  6. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer, vol. 33(2), pages 349-364, November.
  7. repec:hal:journl:halshs-00583868 is not listed on IDEAS
  8. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
  9. Michel Grabisch, 2010. "Ensuring the boundedness of the core of games with restricted cooperation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00544134, HAL.
  10. Gilboa, Itzhak & Lehrer, Ehud, 1991. "Global Games," International Journal of Game Theory, Springer, vol. 20(2), pages 129-47.
    • Itzhak Gilboa & Ehud Lehrer, 1990. "Global Games," Discussion Papers 922, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  11. van den Nouweland, C.G.A.M. & Borm, P.E.M. & Tijs, S.H., 1992. "Allocation rules for hypergraph communication situations," Other publications TiSEM b97fb9dd-2acf-470d-b9eb-a, Tilburg University, School of Economics and Management.
  12. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
  13. Gilles, R.P. & Owen, G. & van den Brink, J.R., 1991. "Games with permission structures : The conjunctive approach," Discussion Paper 1991-14, Tilburg University, Center for Economic Research.
  14. Ichiishi, Tatsuro, 1981. "Super-modularity: Applications to convex games and to the greedy algorithm for LP," Journal of Economic Theory, Elsevier, vol. 25(2), pages 283-286, October.
  15. Graham, Daniel A & Marshall, Robert C & Richard, Jean-Francois, 1990. "Differential Payments within a Bidder Coalition and the Shapley Value," American Economic Review, American Economic Association, vol. 80(3), pages 493-510, June.
  16. van den Nouweland, Anne & Borm, Peter & Tijs, Stef, 1992. "Allocation Rules for Hypergraph Communication Situations," International Journal of Game Theory, Springer, vol. 20(3), pages 255-68.
  17. Hans Reijnierse & Jean Derks, 1998. "Note On the core of a collection of coalitions," International Journal of Game Theory, Springer, vol. 27(3), pages 451-459.
  18. Gabrielle Demange, 2004. "On group stability in hierarchies and networks," Post-Print halshs-00581662, HAL.
  19. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer, vol. 21(3), pages 249-66.
  20. Ulrich Faigle & Michel Grabisch, 2011. "A Discrete Choquet Integral for Ordered Systems," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00563926, HAL.
  21. Derks, Jean J M & Gilles, Robert P, 1995. "Hierarchical Organization Structures and Constraints on Coalition Formation," International Journal of Game Theory, Springer, vol. 24(2), pages 147-63.
  22. repec:spr:compst:v:73:y:2011:i:2:p:189-208 is not listed on IDEAS
  23. repec:hal:journl:halshs-00445171 is not listed on IDEAS
  24. Demange, G., 1991. "Intermediate Preferences and Stable Coalition Structures," DELTA Working Papers 91-16, DELTA (Ecole normale supérieure).
  25. Jean Derks & Gerard Laan & Valery Vasil’ev, 2010. "On the Harsanyi payoff vectors and Harsanyi imputations," Theory and Decision, Springer, vol. 68(3), pages 301-310, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00445171. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.