IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/09055.html
   My bibliography  Save this paper

The core of games on k-regular set systems

Author

Abstract

In the classical setting of cooperative game theory, it is always assumed that all coalitions are feasible. However in many real situations, there are restrictions on the set of coalitions, for example duo to communication, order or hierarchy on the set of players, etc. There are already many works dealing with games on restricted set of coalitions, defining many different structures for the set of feasible coalitions, called set systems. We propose in this paper to consider k-regular set systems, that is, set systems having all maximal chains of the same length k. This is somehow related to communication graphs. We study in this perspective the core of games defined on k-regular set systems. We show that the core may be unbounded and without vertices in some situations

Suggested Citation

  • Lijue Xie & Michel Grabisch, 2009. "The core of games on k-regular set systems," Documents de travail du Centre d'Economie de la Sorbonne 09055, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2009.
  • Handle: RePEc:mse:cesdoc:09055
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2009/09055.pdf
    Download Restriction: no

    Other versions of this item:

    More about this item

    Keywords

    Cooperative game; feasible coalition; core;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:09055. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label). General contact details of provider: http://edirc.repec.org/data/cenp1fr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.