IDEAS home Printed from https://ideas.repec.org/p/crb/wpaper/2020-02.html
   My bibliography  Save this paper

The Priority Value for Cooperative Games with a Priority Structure

Author

Listed:
  • Sylvain Béal

    (CRESE, Université de Franche-comté)

  • Sylvain Ferrières

    (Université de Saint-Etienne, CNRS UMR 5824 GATE Lyon Saint-Etienne)

  • Philippe Solal

    (Université de Saint-Etienne, CNRS UMR 5824 GATE Lyon Saint-Etienne)

Abstract

We study cooperative games with a priority structure modeled by a poset on the agent set. We introduce the Priority value, which splits the Harsanyi dividend of each coalition among the set of its priority agents, i.e. the members of the coalition over which no other coalition member has priority. This allocation shares many desirable properties with the classical Shapley value: it is efficient, additive and satisfies the null agent axiom, which assigns a null payoff to any agent with null contributions to coalitions. We provide two axiomatic characterizations of the Priority value which invoke both classical axioms and new axioms describing various effects that the priority structure can impose on the payoff allocation. Applications to queueing and bankruptcy problems are discussed.

Suggested Citation

  • Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2020. "The Priority Value for Cooperative Games with a Priority Structure," Working Papers 2020-02, CRESE.
  • Handle: RePEc:crb:wpaper:2020-02
    as

    Download full text from publisher

    File URL: https://crese.univ-fcomte.fr/uploads/wp/WP-2020-02.pdf
    File Function: First version, 2020
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. René Brink & Gerard Laan & Valeri Vasil’ev, 2014. "Constrained core solutions for totally positive games with ordered players," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 351-368, May.
    2. René Brink & Chris Dietz, 2014. "Games with a local permission structure: separation of authority and value generation," Theory and Decision, Springer, vol. 76(3), pages 343-361, March.
    3. René van den Brink, 2017. "Games with a Permission Structure: a survey on generalizations and applications," Tinbergen Institute Discussion Papers 17-016/II, Tinbergen Institute.
    4. Nanyang Bu, 2014. "Characterizations of the sequential priority rules in the assignment of object types," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(3), pages 635-645, October.
    5. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    6. M. Álvarez-Mozos & R. Brink & G. Laan & O. Tejada, 2017. "From hierarchies to levels: new solutions for games with hierarchical structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1089-1113, November.
    7. Encarnación Algaba & René Brink & Chris Dietz, 2017. "Power Measures and Solutions for Games Under Precedence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 1008-1022, March.
    8. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    9. Karine Brisset & François Cochard & François Maréchal, 2015. "Is the newcomer more aggressive when the incumbent is granted a Right-of-First-Refusal in a procurement auction? Experimental Evidence," Theory and Decision, Springer, vol. 78(4), pages 639-665, April.
    10. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 349-364, November.
    12. Besner, Manfred, 2019. "Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," MPRA Paper 92771, University Library of Munich, Germany.
    13. Manfred Besner, 2020. "Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 193-212, June.
    14. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    15. van den Brink, Rene & Gilles, Robert P., 1996. "Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures," Games and Economic Behavior, Elsevier, vol. 12(1), pages 113-126, January.
    16. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Post-Print hal-03252179, HAL.
    17. René Brink, 2017. "Rejoinder on: Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 45-48, April.
    18. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    19. Martin Shubik, 1962. "Incentives, Decentralized Control, the Assignment of Joint Costs and Internal Pricing," Management Science, INFORMS, vol. 8(3), pages 325-343, April.
    20. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    21. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    22. Hervé Moulin, 2000. "Priority Rules and Other Asymmetric Rationing Methods," Econometrica, Econometric Society, vol. 68(3), pages 643-684, May.
    23. Jean J. M. Derks & Hans H. Haller, 1999. "Null Players Out? Linear Values For Games With Variable Supports," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 301-314.
    24. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    25. Karine Brisset & François Maréchal & Francois Cochard, 2015. "Is the newcomer more aggressive when the incumbent is granted a Right-of-First-Refusal in a procurement auction? Experimental Evidence," Post-Print hal-03282278, HAL.
    26. Manfred Besner, 2020. "Correction to: Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 213-214, June.
    27. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Lowing & Léa Munich & Kevin Techer, 2024. "Allocating the common costs of a public service operator: an axiomatic approach," Working Papers of BETA 2024-03, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    2. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    3. David Lowing & Léa Munich & Kevin Techer, 2024. "Allocating the common costs of a public service operator: an axiomatic approach," Working Papers 2024-05, CRESE.
    4. Sylvain Béal & Sylvain Ferrières & Adriana Navarro‐Ramos & Philippe Solal, 2023. "Axiomatic characterizations of the family of Weighted priority values," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(4), pages 787-816, December.
    5. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    2. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    3. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    4. René Brink & Chris Dietz & Gerard Laan & Genjiu Xu, 2017. "Comparable characterizations of four solutions for permission tree games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(4), pages 903-923, April.
    5. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    6. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
    7. Sylvain Béal & Issofa Moyouwou & Eric Rémila & Phillippe Solal, 2018. "Cooperative games on intersection closed systems and the Shapley value," Working Papers 2018-06, CRESE.
    8. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 0000. "The Restricted Core for Totally Positive Games with Ordered Players," Tinbergen Institute Discussion Papers 09-038/1, Tinbergen Institute.
    9. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    10. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    11. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    12. M. Álvarez-Mozos & R. Brink & G. Laan & O. Tejada, 2017. "From hierarchies to levels: new solutions for games with hierarchical structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1089-1113, November.
    13. Sylvain Béal & Sylvain Ferrières & Adriana Navarro‐Ramos & Philippe Solal, 2023. "Axiomatic characterizations of the family of Weighted priority values," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(4), pages 787-816, December.
    14. René Brink & Chris Dietz, 2014. "Games with a local permission structure: separation of authority and value generation," Theory and Decision, Springer, vol. 76(3), pages 343-361, March.
    15. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    16. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    17. Emilio Calvo & Esther Gutiérrez-López, 2015. "The value in games with restricted cooperation," Discussion Papers in Economic Behaviour 0115, University of Valencia, ERI-CES.
    18. Encarnación Algaba & René Brink & Chris Dietz, 2018. "Network Structures with Hierarchy and Communication," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 265-282, October.
    19. René Brink & Ilya Katsev & Gerard Laan, 2011. "Axiomatizations of two types of Shapley values for games on union closed systems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(1), pages 175-188, May.
    20. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Tvede, Mich & Østerdal, Lars Peter, 2017. "Sharing the proceeds from a hierarchical venture," Games and Economic Behavior, Elsevier, vol. 102(C), pages 98-110.

    More about this item

    Keywords

    Priority structure; Shapley value; Priority value; necessary agent; Harsanyi solution; queueing problems; bankruptcy problems.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crb:wpaper:2020-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauent Kondratuk (email available below). General contact details of provider: https://edirc.repec.org/data/crufcfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.