IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02510071.html

Cooperative games on intersection closed systems and the Shapley value

Author

Listed:
  • Sylvain Béal

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Issofa Moyouwou

    (UY1 - Université de Yaoundé I)

  • Eric Rémila

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

A situation in which a finite set of agents can obtain certain payoffs by cooperation can be described by a cooperative game with transferable utility, or simply a TU-game. In the literature, various models of games with restricted cooperation can be found, in which only certain subsets of the agent set are allowed to form. In this article, we consider such sets of feasible coalitions that are closed under intersection, i.e., for any two feasible coalitions, their intersection is also feasible. Such set systems, called intersection closed systems, are a generalization of the convex geometries. We use the concept of closure operator for intersection closed systems and we define the restricted TU-game taking into account the limited possibilities of cooperation determined by the intersection closed system. Next, we study the properties of this restricted TU-game. Finally, we introduce and axiomatically characterize a family of allocation rules for games TU-games on intersection closed systems, which contains a natural extension of the Shapley value.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sylvain Béal & Issofa Moyouwou & Eric Rémila & Philippe Solal, 2020. "Cooperative games on intersection closed systems and the Shapley value," Post-Print halshs-02510071, HAL.
  • Handle: RePEc:hal:journl:halshs-02510071
    DOI: 10.1016/j.mathsocsci.2020.01.005
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    2. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    3. Liang Yuan & Xia Wu & Weijun He & Yang Kong & Thomas Stephen Ramsey & Dagmawi Mulugeta Degefu, 2022. "A multi-weight fuzzy Methodological Framework for Allocating Coalition Payoffs of Joint Water Environment Governance in Transboundary River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3367-3384, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02510071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.