IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Weighted Component Fairness for Forest Games

  • Béal, Sylvain
  • Rémila, Eric
  • Solal, Philippe

We present the axiom of weighted component fairness for the class of forest games, a generalization of component fairness introduced by Herings, Talman and van der Laan (2008) in order to characterize the average tree solution. Given a system of weights, component eciency and weighted component fairness yield a unique allocation rule. We provide an analysis of the set of allocation rules generated by component eciency and weighted component fairness. This allows us to provide a new characterization of the random tree solutions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 17455.

in new window

Date of creation: 18 Aug 2009
Date of revision:
Handle: RePEc:pra:mprapa:17455
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
  2. Herings P. Jean-Jacques & Laan Gerard van der & Talman Dolf & Yang Zaifu, 2008. "The Average Tree Solution for Cooperative Games with Communication Structure," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  3. Michel Grabisch, 2009. "The core of games on ordered structures and graphs," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445171, HAL.
  4. René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
  5. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 349-364, November.
  6. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2012. "Fair agreements for sharing international rivers with multiple springs and externalities," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 388-403.
  7. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J., 2008. "The average tree solution for cycle-free graph games," Other publications TiSEM f243609c-2847-415f-ae52-1, Tilburg University, School of Economics and Management.
  8. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
  9. Gabrielle Demange, 2004. "On group stability in hierarchies and networks," Post-Print halshs-00581662, HAL.
  10. Richard Baron & Sylvain Béal & Éric Rémila & Philippe Solal, 2011. "Average Tree Solutions and the Distribution of Harsanyi Dividends," Post-Print halshs-00674425, HAL.
  11. Tijs, Stef & Borm, Peter & Lohmann, Edwin & Quant, Marieke, 2011. "An average lexicographic value for cooperative games," European Journal of Operational Research, Elsevier, vol. 213(1), pages 210-220, August.
  12. Roger B. Myerson, 1976. "Graphs and Cooperation in Games," Discussion Papers 246, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  13. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:17455. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.