IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v40y2011i1p87-110.html
   My bibliography  Save this article

Harsanyi power solutions for graph-restricted games

Author

Listed:
  • René Brink

    ()

  • Gerard Laan

    ()

  • Vitaly Pruzhansky

    ()

Abstract

This discussion paper resulted in a publication in the 'International Journal of Game Theory', 40, 87-110. A situation in which a finite set of players can obtain certain payoffs by cooperation can be described by a cooperative game with transferable utility, or simply a TU-game. A solution for TU-games assigns a set of payoff distributions (possibly empty or consisting of a unique element) to every TU-game. Harsanyi solutions are solutions that are based on distributing dividends. In this paper we consider games with limited communication structure in which the edges or links of an undirected graph on the set of players represent binary communication links between the players such that players can cooperate if and only if they are connected. For such games we discuss Harsanyi solutions whose dividend shares are based on power measures for nodes in corresponding communication graphs. Special attention is given to the Harsanyi degree solution which equals the Shapley value on the class of complete graph games (i.e. the class of TU-games) and equals the position value on the class of cycle-free graph games. Another example is the Harsanyi power solution that is based on the equal power measure, which turns out to be the Myerson value. Various applications of our results are provided.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • René Brink & Gerard Laan & Vitaly Pruzhansky, 2011. "Harsanyi power solutions for graph-restricted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 87-110, February.
  • Handle: RePEc:spr:jogath:v:40:y:2011:i:1:p:87-110
    DOI: 10.1007/s00182-009-0220-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-009-0220-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marco Slikker, 2005. "A characterization of the position value," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(4), pages 505-514, November.
    2. Hamiache, Gerard, 1999. "A Value with Incomplete Communication," Games and Economic Behavior, Elsevier, vol. 26(1), pages 59-78, January.
    3. P. Herings & Gerard Laan & Dolf Talman, 2005. "The positional power of nodes in digraphs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 24(3), pages 439-454, June.
    4. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    5. Endre Bjørndal & Herbert Hamers & Maurice Koster, 2004. "Cost allocation in a bank ATM network," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 405-418, July.
    6. Daniel Gómez & Enrique Gonz{'a}lez-Arangüena & Conrado Manuel & Guillermo Owen & Monica Del Pozo, 2004. "A Unified Approach To The Myerson Value And The Position Value," Theory and Decision, Springer, vol. 56(2_2), pages 63-76, February.
    7. Graham, Daniel A & Marshall, Robert C, 1987. "Collusive Bidder Behavior at Single-Object Second-Price and English Auctions," Journal of Political Economy, University of Chicago Press, vol. 95(6), pages 1217-1239, December.
    8. Gomez, Daniel & Gonzalez-Aranguena, Enrique & Manuel, Conrado & Owen, Guillermo & del Pozo, Monica & Tejada, Juan, 2003. "Centrality and power in social networks: a game theoretic approach," Mathematical Social Sciences, Elsevier, vol. 46(1), pages 27-54, August.
    9. Graham, Daniel A & Marshall, Robert C & Richard, Jean-Francois, 1990. "Differential Payments within a Bidder Coalition and the Shapley Value," American Economic Review, American Economic Association, vol. 80(3), pages 493-510, June.
    10. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    11. Daniel Gómez & Enrique Gonz{’a}lez-Arangüena & Conrado Manuel & Guillermo Owen & Monica Del Pozo, 2004. "A Unified Approach To The Myerson Value And The Position Value," Theory and Decision, Springer, vol. 56(1), pages 63-76, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Weighted component fairness for forest games," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 144-151.
    2. Demuynck, Thomas & Rock, Bram De & Ginsburgh, Victor, 2016. "The transfer paradox in welfare space," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 1-4.
    3. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J., 2005. "The Component Fairness Solution for Cycle-Free Graph Games," Discussion Paper 2005-127, Tilburg University, Center for Economic Research.
    4. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    5. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    6. Encarnacion Algaba & Jesus Mario Bilbao & Rene van den Brink & Jorge J. Lopez, 2011. "The Myerson Value and Superfluous Supports in Union Stable Systems," Tinbergen Institute Discussion Papers 11-127/1, Tinbergen Institute.
    7. Khmelnitskaya, A. & van der Laan, G. & Talman, Dolf, 2016. "Centrality Rewarding Shapley and Myerson Values for Undirected Graph Games," Discussion Paper 2016-035, Tilburg University, Center for Economic Research.
    8. Selçuk, O., 2014. "Structural restrictions in cooperation," Other publications TiSEM 0da8d0d3-08c2-4f86-92a1-3, Tilburg University, School of Economics and Management.
    9. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2016. "The proportional Shapley value and an application," Working Papers hal-01362228, HAL.
    10. Kamijo, Yoshio, 2009. "A linear proportional effort allocation rule," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 341-353, November.
    11. Napel, Stefan & Nohn, Andreas & Alonso-Meijide, José Maria, 2012. "Monotonicity of power in weighted voting games with restricted communication," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 247-257.
    12. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    13. Belau, Julia, 2016. "Outside option values for network games," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 76-86.
    14. repec:wsi:igtrxx:v:19:y:2017:i:03:n:s0219198917500128 is not listed on IDEAS
    15. Pierre Dehez, 2017. "On Harsanyi Dividends and Asymmetric Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-36, September.

    More about this item

    Keywords

    Cooperative TU-game; Harsanyi dividend; Communication structure; Power measure; Position value; Myerson value; C71;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:40:y:2011:i:1:p:87-110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.