IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v64y2012i3p266-271.html
   My bibliography  Save this article

An axiomatic characterization of the position value for network situations

Author

Listed:
  • van den Nouweland, Anne
  • Slikker, Marco

Abstract

Network situations as introduced by Jackson and Wolinsky (1996) incorporate the influence of the architecture of a network rather than just the connectivity it provides and thereby provide a more flexible setting than communication situations, which consist of a game with transferable utility and a network. We characterize the position value for network situations along the lines of the characterization of the Shapley value by Shapley (1953). In contrast to previous attempts to provide such an axiomatization, we require no condition on the underlying network. The reason for this is that we exploit the additional flexibility of network situations.

Suggested Citation

  • van den Nouweland, Anne & Slikker, Marco, 2012. "An axiomatic characterization of the position value for network situations," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 266-271.
  • Handle: RePEc:eee:matsoc:v:64:y:2012:i:3:p:266-271
    DOI: 10.1016/j.mathsocsci.2012.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489612000558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2012.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Slikker, 2005. "A characterization of the position value," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(4), pages 505-514, November.
    2. Hamiache, Gerard, 1999. "A Value with Incomplete Communication," Games and Economic Behavior, Elsevier, vol. 26(1), pages 59-78, January.
    3. Jackson, Matthew O. & van den Nouweland, Anne, 2005. "Strongly stable networks," Games and Economic Behavior, Elsevier, vol. 51(2), pages 420-444, May.
    4. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    5. Haeringer, Guillaume, 2006. "A new weight scheme for the Shapley value," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 88-98, July.
    6. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    7. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    8. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    9. A. Ghintran & E. González-Arangüena & C. Manuel, 2012. "A probabilistic position value," Annals of Operations Research, Springer, vol. 201(1), pages 183-196, December.
    10. Marco Slikker, 2005. "Link Monotonic Allocation Schemes," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 473-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    2. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    3. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, September.
    4. repec:hal:pseose:halshs-01207823 is not listed on IDEAS
    5. Nils Roehl, 2013. "Two-Stage Allocation Rules," Working Papers CIE 73, Paderborn University, CIE Center for International Economics.
    6. Christophe Bravard & Sudipta Sarangi & ANNE NOUWELAND & MARCO SLIKKER, 2016. "The Position Value for Partition Function Form Network Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 18(2), pages 226-247, April.
    7. Belau, Julia, 2016. "Outside option values for network games," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 76-86.
    8. Borkotokey, Surajit & Chakrabarti, Subhadip & Gilles, Robert P. & Gogoi, Loyimee & Kumar, Rajnish, 2021. "Probabilistic network values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 169-180.
    9. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    10. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2023. "Weighted position value for Network games," Papers 2308.03494, arXiv.org.
    11. Li, Daniel Li & Shan, Erfang, 2019. "The position value and the structures of graphs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 190-197.
    12. Julia Belau, 2018. "The class of ASN-position values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(1), pages 65-99, January.
    13. Nils Roehl, 2013. "Two-Stage Allocation Rules," Working Papers Dissertations 01, Paderborn University, Faculty of Business Administration and Economics.
    14. Borkotokey, Surajit & Kumar, Rajnish & Sarangi, Sudipta, 2015. "A solution concept for network games: The role of multilateral interactions," European Journal of Operational Research, Elsevier, vol. 243(3), pages 912-920.
    15. Daniel Li Li & Erfang Shan, 2024. "A new value for communication situations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(2), pages 535-551, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    2. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    3. Slikker, Marco, 2007. "Bidding for surplus in network allocation problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 493-511, November.
    4. Surajit Borkotokey & Sujata Goala & Niharika Kakoty & Parishmita Boruah, 2022. "The component-wise egalitarian Myerson value for Network Games," Papers 2201.02793, arXiv.org.
    5. Surajit Borkotokey & Loyimee Gogoi & Sudipta Sarangi, 2014. "A Survey of Player-based and Link-based Allocation Rules for Network Games," Studies in Microeconomics, , vol. 2(1), pages 5-26, June.
    6. A. Ghintran & E. González-Arangüena & C. Manuel, 2012. "A probabilistic position value," Annals of Operations Research, Springer, vol. 201(1), pages 183-196, December.
    7. Sylvain Béal & André Casajus & Frank Huettner, 2018. "Efficient extensions of communication values," Annals of Operations Research, Springer, vol. 264(1), pages 41-56, May.
    8. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2023. "Weighted position value for Network games," Papers 2308.03494, arXiv.org.
    9. Julia Belau, 2018. "The class of ASN-position values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(1), pages 65-99, January.
    10. Borkotokey, Surajit & Chakrabarti, Subhadip & Gilles, Robert P. & Gogoi, Loyimee & Kumar, Rajnish, 2021. "Probabilistic network values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 169-180.
    11. Daniel Li Li & Erfang Shan, 2022. "Safety of links with respect to the Myerson value for communication situations," Operational Research, Springer, vol. 22(3), pages 2121-2131, July.
    12. Napel, Stefan & Nohn, Andreas & Alonso-Meijide, José Maria, 2012. "Monotonicity of power in weighted voting games with restricted communication," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 247-257.
    13. Slikker, M. & Gilles, R.P. & Norde, H.W. & Tijs, S.H., 2000. "Directed Communication Networks," Discussion Paper 2000-84, Tilburg University, Center for Economic Research.
    14. Ghintran, Amandine, 2013. "Weighted position values," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 157-163.
    15. Kamijo, Yoshio, 2009. "A linear proportional effort allocation rule," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 341-353, November.
    16. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    17. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    18. van den Brink, René & Khmelnitskaya, Anna & van der Laan, Gerard, 2012. "An efficient and fair solution for communication graph games," Economics Letters, Elsevier, vol. 117(3), pages 786-789.
    19. Sylvain Béal & Anna Khmelnitskaya & Philippe Solal, 2018. "Two-step values for games with two-level communication structure," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 563-587, February.
    20. Navarro, Florian, 2020. "The center value: A sharing rule for cooperative games on acyclic graphs," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 1-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:64:y:2012:i:3:p:266-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.