IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v52y2006i1p88-98.html

A new weight scheme for the Shapley value

Author

Listed:
  • Haeringer, Guillaume

Abstract

It is well known since Owen (Management Science, 1968) that the weights in the weighted Shapley value cannot be interpreted as a measure of power (i.e. of the ability to bargain) of the players. This paper proposes a new weight scheme for the Shapley value. Weights in this framework have to be interpreted as a measure of bargaining power. Two different axiomatic characterization of this new value are proposed: one including the weights in the axioms and one without.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Haeringer, Guillaume, 2006. "A new weight scheme for the Shapley value," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 88-98, July.
  • Handle: RePEc:eee:matsoc:v:52:y:2006:i:1:p:88-98
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(06)00023-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conrado M. Manuel & Daniel Martín, 2020. "A Monotonic Weighted Shapley Value," Group Decision and Negotiation, Springer, vol. 29(4), pages 627-654, August.
    2. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    3. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    4. repec:hal:pseose:halshs-01207823 is not listed on IDEAS
    5. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    6. Yue-Jun Zhang & Ya-Fang Sun & Bao-Feng Huo, 2023. "The optimal product pricing and carbon emissions reduction profit allocation of CET-covered enterprises in the cooperative supply chain," Annals of Operations Research, Springer, vol. 329(1), pages 871-899, October.
    7. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
    8. van den Nouweland, Anne & Slikker, Marco, 2012. "An axiomatic characterization of the position value for network situations," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 266-271.
    9. Ghintran, Amandine, 2013. "Weighted position values," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 157-163.
    10. Wilson da C. Vieira, 2015. "Allocation of costs to clean up a polluted river: an axiomatic approach," Economics Bulletin, AccessEcon, vol. 35(2), pages 1216-1226.
    11. Pierre Dehez, 2017. "On Harsanyi Dividends and Asymmetric Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-36, September.
    12. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    13. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    14. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2023. "Weighted position value for Network games," Papers 2308.03494, arXiv.org.
    15. Demuynck, Thomas & Rock, Bram De & Ginsburgh, Victor, 2016. "The transfer paradox in welfare space," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 1-4.
    16. Radzik, Tadeusz, 2012. "A new look at the role of players’ weights in the weighted Shapley value," European Journal of Operational Research, Elsevier, vol. 223(2), pages 407-416.
    17. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
    18. Dimitrov, Dinko & Haake, Claus-Jochen, 2011. "An axiomatic approach to composite solutions," Center for Mathematical Economics Working Papers 385, Center for Mathematical Economics, Bielefeld University.
    19. Julia Belau, 2018. "The class of ASN-position values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(1), pages 65-99, January.
    20. Borkotokey, Surajit & Kumar, Rajnish & Sarangi, Sudipta, 2015. "A solution concept for network games: The role of multilateral interactions," European Journal of Operational Research, Elsevier, vol. 243(3), pages 912-920.
    21. Inés Macho-Stadler & David Pérez-Castrillo & David Wettstein, 2010. "Dividends and weighted values in games with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 177-184, March.
    22. Estela Sánchez-Rodríguez & Miguel Ángel Mirás Calvo & Carmen Quinteiro Sandomingo & Iago Núñez Lugilde, 2024. "Coalition-weighted Shapley values," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 547-577, June.
    23. Inés Macho-Stadler & David Pérez-Castrillo & David Wettstein, 2008. "Dividends and Weighted Values in Games with Externalities," Working Papers 366, Barcelona School of Economics.
    24. Jason R. Marden & Adam Wierman, 2013. "Distributed Welfare Games," Operations Research, INFORMS, vol. 61(1), pages 155-168, February.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:52:y:2006:i:1:p:88-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.