IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpga/0501005.html
   My bibliography  Save this paper

The Harsanyi paradox and the 'right to talk' in bargaining among coalitions

Author

Listed:
  • Juan Vidal-Puga

    (Universidade de Vigo)

Abstract

We introduce a non-cooperative model of bargaining when players are divided into coalitions. The model is a modification of the mechanism in Vidal-Puga (Economic Theory, 2005) so that all the players have the same chances to make proposals. This means that players maintain their own 'right to talk' when joining a coalition. We apply this model to an intriguing example presented by Krasa, Tamimi and Yannelis (Journal of Mathematical Economics, 2003) and show that the Harsanyi paradox (forming a coalition may be disadvantageous) disappears.

Suggested Citation

  • Juan Vidal-Puga, 2005. "The Harsanyi paradox and the 'right to talk' in bargaining among coalitions," Game Theory and Information 0501005, EconWPA.
  • Handle: RePEc:wpa:wuwpga:0501005
    Note: Type of Document - pdf; pages: 16
    as

    Download full text from publisher

    File URL: http://econwpa.repec.org/eps/game/papers/0501/0501005.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Winter, Eyal, 1992. "The consistency and potential for values of games with coalition structure," Games and Economic Behavior, Elsevier, vol. 4(1), pages 132-144, January.
    3. Vidal-Puga, Juan & Bergantinos, Gustavo, 2003. "An implementation of the Owen value," Games and Economic Behavior, Elsevier, vol. 44(2), pages 412-427, August.
    4. Albizuri, M. Josune & Zarzuelo, Jose M., 2004. "On coalitional semivalues," Games and Economic Behavior, Elsevier, vol. 49(2), pages 221-243, November.
    5. Levy, Anat & Mclean, Richard P., 1989. "Weighted coalition structure values," Games and Economic Behavior, Elsevier, vol. 1(3), pages 234-249, September.
    6. Haeringer, Guillaume, 2006. "A new weight scheme for the Shapley value," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 88-98, July.
    7. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    8. Juan Vidal-Puga, 2005. "A bargaining approach to the Owen value and the Nash solution with coalition structure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(3), pages 679-701, April.
    9. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    10. Calvo, Emilio & Gutiérrez, Esther, 2010. "Solidarity in games with a coalition structure," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 196-203, November.
    11. Krasa, Stefan & Temimi, Akram & Yannelis, Nicholas C., 2003. "Coalition structure values in differential information economies: is unity a strength?," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 51-62, February.
    12. Suchan Chae & Hervé Moulin, 2010. "Bargaining among groups: an axiomatic viewpoint," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 71-88, March.
    13. Amer, Rafael & Carreras, Francese & Gimenez, Jose Miguel, 2002. "The modified Banzhaf value for games with coalition structure: an axiomatic characterization," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 45-54, January.
    14. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    15. Kalai, Ehud & Samet, Dov, 1985. "Monotonic Solutions to General Cooperative Games," Econometrica, Econometric Society, vol. 53(2), pages 307-327, March.
    16. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    17. Chae, Suchan & Heidhues, Paul, 2004. "A group bargaining solution," Mathematical Social Sciences, Elsevier, vol. 48(1), pages 37-53, July.
    18. José Alonso-Meijide & M. Fiestras-Janeiro, 2002. "Modification of the Banzhaf Value for Games with a Coalition Structure," Annals of Operations Research, Springer, vol. 109(1), pages 213-227, January.
    19. Calvo, Emilio & Javier Lasaga, J. & Winter, Eyal, 1996. "The principle of balanced contributions and hierarchies of cooperation," Mathematical Social Sciences, Elsevier, vol. 31(3), pages 171-182, June.
    20. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    21. Kamijo, Yoshio, 2008. "Implementation of weighted values in hierarchical and horizontal cooperation structures," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 336-349, November.
    22. Hart, Sergiu & Kurz, Mordecai, 1983. "Endogenous Formation of Coalitions," Econometrica, Econometric Society, vol. 51(4), pages 1047-1064, July.
    23. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Bargaining and Value," Econometrica, Econometric Society, vol. 64(2), pages 357-380, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    2. Laruelle, Annick & Valenciano, Federico, 2008. "Noncooperative foundations of bargaining power in committees and the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 63(1), pages 341-353, May.
    3. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    4. Zhang, Xiaodong, 2009. "A note on the group bargaining solution," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 155-160, March.
    5. Calvo, Emilio & Gutiérrez, Esther, 2010. "Solidarity in games with a coalition structure," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 196-203, November.
    6. Gustavo Bergantiños & Balbina Casas- Méndez & Gloria Fiestras- Janeiro & Juan Vidal-Puga, 2005. "A Focal-Point Solution for Bargaining Problems with Coalition Structure," Game Theory and Information 0511006, EconWPA.
    7. Bergantinos, G. & Casas-Mendez, B. & Fiestras-Janeiro, M.G. & Vidal-Puga, J.J., 2007. "A solution for bargaining problems with coalition structure," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 35-58, July.
    8. María Gómez-Rúa & Juan Vidal-Puga, 2014. "Bargaining and membership," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 800-814, July.
    9. Besner, Manfred, 2017. "Weighted Shapley levels values," MPRA Paper 82978, University Library of Munich, Germany.

    More about this item

    Keywords

    cooperative games bargaining coalition structure Harsanyi paradox;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0501005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.