IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/87617.html
   My bibliography  Save this paper

The weighted Shapley support levels values

Author

Listed:
  • Besner, Manfred

Abstract

This paper presents a new class of weighted values for level structures. The new values, called weighted Shapley support levels values, extend the weighted Shapley values to level structures and contain the Shapley levels value (Winter, 1989) as a special case. Since a level structure with only two levels coincides with a coalition structure we obtain, as a side effect, also new axiomatizations of weighted coalition structure values, presented in Levy and McLean (1989).

Suggested Citation

  • Besner, Manfred, 2018. "The weighted Shapley support levels values," MPRA Paper 87617, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:87617
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/87617/1/MPRA_paper_87617.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/101674/1/MPRA_paper_101674.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/93438/1/MPRA_paper_93438.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McLean, Richard P, 1991. "Random Order Coalition Structure Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 109-127.
    2. repec:spr:compst:v:66:y:2007:i:2:p:255-261 is not listed on IDEAS
    3. Levy, Anat & Mclean, Richard P., 1989. "Weighted coalition structure values," Games and Economic Behavior, Elsevier, vol. 1(3), pages 234-249, September.
    4. M. Álvarez-Mozos & R. Brink & G. Laan & O. Tejada, 2017. "From hierarchies to levels: new solutions for games with hierarchical structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1089-1113, November.
    5. Winter, Eyal, 1989. "A Value for Cooperative Games with Levels Structure of Cooperation," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 227-240.
    6. Besner, Manfred, 2017. "Weighted Shapley levels values," MPRA Paper 82978, University Library of Munich, Germany.
    7. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    8. André Casajus, 2010. "Another characterization of the Owen value without the additivity axiom," Theory and Decision, Springer, vol. 69(4), pages 523-536, October.
    9. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Calvo, Emilio & Javier Lasaga, J. & Winter, Eyal, 1996. "The principle of balanced contributions and hierarchies of cooperation," Mathematical Social Sciences, Elsevier, vol. 31(3), pages 171-182, June.
    11. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    12. Chun, Youngsub, 1989. "A new axiomatization of the shapley value," Games and Economic Behavior, Elsevier, vol. 1(2), pages 119-130, June.
    13. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    14. Nowak, A.S. & Radzik, T., 1995. "On axiomatizations of the weighted Shapley values," Games and Economic Behavior, Elsevier, vol. 8(2), pages 389-405.
    15. Anna Khmelnitskaya & Elena Yanovskaya, 2007. "Owen coalitional value without additivity axiom," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 255-261, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besner, Manfred, 2018. "Weighted Shapley hierarchy levels values," MPRA Paper 88160, University Library of Munich, Germany.
    2. Besner, Manfred, 2018. "Two classes of weighted values for coalition structures with extensions to level structures," MPRA Paper 87742, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besner, Manfred, 2017. "Weighted Shapley levels values," MPRA Paper 82978, University Library of Munich, Germany.
    2. Besner, Manfred, 2018. "Two classes of weighted values for coalition structures with extensions to level structures," MPRA Paper 87742, University Library of Munich, Germany.
    3. Xun-Feng Hu & Deng-Feng Li, 0. "The Equal Surplus Division Value for Cooperative Games with a Level Structure," Group Decision and Negotiation, Springer, vol. 0, pages 1-27.
    4. Xun-Feng Hu & Deng-Feng Li, 2021. "The Equal Surplus Division Value for Cooperative Games with a Level Structure," Group Decision and Negotiation, Springer, vol. 30(6), pages 1315-1341, December.
    5. Xun-Feng Hu, 2021. "New axiomatizations of the Owen value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 585-603, June.
    6. Xun-Feng Hu, 2020. "The weighted Shapley-egalitarian value for cooperative games with a coalition structure," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 193-212, April.
    7. Besner, Manfred, 2018. "Weighted Shapley hierarchy levels values," MPRA Paper 88160, University Library of Munich, Germany.
    8. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    9. Besner, Manfred, 2020. "Values for level structures with polynomial-time algorithms, relevant coalition functions, and general considerations," MPRA Paper 99355, University Library of Munich, Germany.
    10. Silvia Lorenzo-Freire, 2017. "New characterizations of the Owen and Banzhaf–Owen values using the intracoalitional balanced contributions property," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 579-600, October.
    11. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    12. Calvo, Emilio & Gutiérrez, Esther, 2010. "Solidarity in games with a coalition structure," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 196-203, November.
    13. René Brink & Anna Khmelnitskaya & Gerard Laan, 2016. "An Owen-type value for games with two-level communication structure," Annals of Operations Research, Springer, vol. 243(1), pages 179-198, August.
    14. Hu, Xun-Feng & Li, Deng-Feng & Xu, Gen-Jiu, 2018. "Fair distribution of surplus and efficient extensions of the Myerson value," Economics Letters, Elsevier, vol. 165(C), pages 1-5.
    15. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    16. Gustavo Bergantiños & Juan Vidal-Puga, 2005. "The Consistent Coalitional Value," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 832-851, November.
    17. Besner, Manfred, 2018. "Proportional Shapley levels values," MPRA Paper 87120, University Library of Munich, Germany.
    18. María Gómez-Rúa & Juan Vidal-Puga, 2014. "Bargaining and membership," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 800-814, July.
    19. Manfred Besner, 2020. "Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 193-212, June.
    20. Besner, Manfred, 2021. "Disjointly productive players and the Shapley value," MPRA Paper 108241, University Library of Munich, Germany.

    More about this item

    Keywords

    Cooperative game · Level structure · (Weighted) Shapley (levels) value · Weighted proportionality · Harsanyi set · Dividends;

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:87617. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.