IDEAS home Printed from https://ideas.repec.org/p/dbe/wpaper/0810.html
   My bibliography  Save this paper

Solidarity in games with a coalition structure

Author

Listed:
  • Emilio Calvo

    () (ERI-CES)

  • Maria Esther Gutierrez

    () (Universidad del País Vasco/E.H.U)

Abstract

A new axiomatic characterization of the two-step Shapley value (Kamijo, 2009) is presented based on a solidarity principle of the members of any union: when the game changes due to the addition or deletion of players outside the union, all members of the union will share the same gains/losses.

Suggested Citation

  • Emilio Calvo & Maria Esther Gutierrez, 2010. "Solidarity in games with a coalition structure," Discussion Papers in Economic Behaviour 0810, University of Valencia, ERI-CES.
  • Handle: RePEc:dbe:wpaper:0810
    as

    Download full text from publisher

    File URL: https://www.uv.es/erices/RePEc/WP/2010/0810.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Albizuri, M. Josune & Zarzuelo, Jose M., 2004. "On coalitional semivalues," Games and Economic Behavior, Elsevier, vol. 49(2), pages 221-243, November.
    2. José Alonso-Meijide & M. Fiestras-Janeiro, 2002. "Modification of the Banzhaf Value for Games with a Coalition Structure," Annals of Operations Research, Springer, vol. 109(1), pages 213-227, January.
    3. Levy, Anat & Mclean, Richard P., 1989. "Weighted coalition structure values," Games and Economic Behavior, Elsevier, vol. 1(3), pages 234-249, September.
    4. Calvo, Emilio & Javier Lasaga, J. & Winter, Eyal, 1996. "The principle of balanced contributions and hierarchies of cooperation," Mathematical Social Sciences, Elsevier, vol. 31(3), pages 171-182, June.
    5. Hart, Sergiu & Kurz, Mordecai, 1983. "Endogenous Formation of Coalitions," Econometrica, Econometric Society, vol. 51(4), pages 1047-1064, July.
    6. Winter, Eyal, 1989. "A Value for Cooperative Games with Levels Structure of Cooperation," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 227-240.
    7. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    8. Casajus, André, 2009. "Outside options, component efficiency, and stability," Games and Economic Behavior, Elsevier, vol. 65(1), pages 49-61, January.
    9. Amer, Rafael & Carreras, Francese & Gimenez, Jose Miguel, 2002. "The modified Banzhaf value for games with coalition structure: an axiomatic characterization," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 45-54, January.
    10. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bourheneddine Ben Dhaou & Abderrahmane Ziad, 2015. "The Free Solidarity Value," Economics Working Paper Archive (University of Rennes 1 & University of Caen) 201508, Center for Research in Economics and Management (CREM), University of Rennes 1, University of Caen and CNRS.
    2. Caulier, Jean-François & Mauleon, Ana & Vannetelbosch, Vincent, 2015. "Allocation rules for coalitional network games," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 80-88.
    3. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Fairness and fairness for neighbors: The difference between the Myerson value and component-wise egalitarian solutions," Economics Letters, Elsevier, vol. 117(1), pages 263-267.
    4. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    5. Frank Huettner, 2015. "A proportional value for cooperative games with a coalition structure," Theory and Decision, Springer, vol. 78(2), pages 273-287, February.

    More about this item

    Keywords

    Games with a coalition structure. Owen value. The two-step Shapley value. Solidarity.;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbe:wpaper:0810. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emilio Calvo Ramón). General contact details of provider: http://edirc.repec.org/data/ericees.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.