IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Compensations in the Shapley Value and the Compensation Solutions for Graph Games

Listed author(s):
  • Sylvain Béal

    (GATE Lyon Saint-Étienne - Groupe d'analyse et de théorie économique - ENS Lyon - École normale supérieure - Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université Jean Monnet - Saint-Etienne - PRES Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'analyse et de théorie économique - ENS Lyon - École normale supérieure - Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université Jean Monnet - Saint-Etienne - PRES Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Éric Rémila

    ()

    (GATE Lyon Saint-Étienne - Groupe d'analyse et de théorie économique - ENS Lyon - École normale supérieure - Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université Jean Monnet - Saint-Etienne - PRES Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

We consider an alternative expression of the Shapley value that reveals a system of compensations: each player receives an equal share of the worth of each coalition he belongs to, and has to compensate an equal share of the worth of any coalition he does not belong to. We give an interpretation in terms of formation of the grand coalition according to an ordering of the players and define the corresponding compensation vector. Then, we generalize this idea to cooperative games with a communication graph. Firstly, we consider cooperative games with a forest (cycle-free graph). We extend the compensation vector by considering all rooted spanning trees of the forest (see Demange 2004) instead of orderings of the players. The associated allocation rule, called the compensation solution, is characterized by component efficiency and relative fairness. The latter axiom takes into account the relative position of a player with respect to his component. Secondly, we consider cooperative games with arbitrary graphs and construct rooted spanning trees by using the classical algorithms DFS and BFS. If the graph is complete, we show that the compensation solutions associated with DFS and BFS coincide with the Shapley value and the equal surplus division respectively.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by HAL in its series Post-Print with number halshs-00530607.

as
in new window

Length:
Date of creation: 13 Sep 2010
Publication status: Published in European Conference on Complex Systems (ECCS), Sep 2010, Lisbonne, Portugal
Handle: RePEc:hal:journl:halshs-00530607
Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-00530607
Contact details of provider: Web page: https://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Ernst Fehr & Klaus M. Schmidt, 1999. "A Theory of Fairness, Competition, and Cooperation," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 817-868.
  2. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
  3. Evans, Robert A., 1996. "Value, Consistency, and Random Coalition Formation," Games and Economic Behavior, Elsevier, vol. 12(1), pages 68-80, January.
  4. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
  5. Pierre Dehez & Daniela Tellone, 2013. "Data Games: Sharing Public Goods with Exclusion," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 15(4), pages 654-673, 08.
  6. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
  7. Aadland, David & Kolpin, Van, 2004. "Environmental determinants of cost sharing," Journal of Economic Behavior & Organization, Elsevier, vol. 53(4), pages 495-511, April.
  8. Anna Khmelnitskaya, 2010. "Values for rooted-tree and sink-tree digraph games and sharing a river," Theory and Decision, Springer, vol. 69(4), pages 657-669, October.
  9. Aadland, David & Kolpin, Van, 1998. "Shared irrigation costs: An empirical and axiomatic analysis," Mathematical Social Sciences, Elsevier, vol. 35(2), pages 203-218, March.
  10. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
  11. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
  12. Pierre Dehez & Daniela Tellone, 2013. "Data Games: Sharing Public Goods with Exclusion," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 15(4), pages 654-673, 08.
  13. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
  14. Aadland, David & Kolpin, Van, 2004. "Erratum to "Environmental determinants of cost sharing"," Journal of Economic Behavior & Organization, Elsevier, vol. 55(1), pages 105-121, September.
  15. Teck-Hua Ho & Xuanming Su, 2009. "Peer-Induced Fairness in Games," American Economic Review, American Economic Association, vol. 99(5), pages 2022-2049, December.
  16. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
  17. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 349-364, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00530607. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.