IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Average tree solutions and the distribution of Harsanyi dividends

  • Richard Baron

    ()

  • Sylvain Béal

    ()

  • Eric Rémila

    ()

  • Philippe Solal

    ()

We consider communication situations games being the combination of a TU-game and a communication graph. We study the average tree (AT) solutions introduced by Herings \sl et al. [9] and [10]. The AT solutions are defined with respect to a set, say T, of rooted spanning trees of the communication graph. We characterize these solutions by efficiency, linearity and an axiom of T-hierarchy. Then we prove the following results. Firstly, the AT solution with respect to T is a Harsanyi solution if and only if T is a subset of the set of trees introduced in [10]. Secondly, the latter set is constructed by the classical DFS algorithm and the associated AT solution coincides with the Shapley value when the communication graph is complete. Thirdly, the AT solution with respect to trees constructed by the other classical algorithm BFS yields the equal surplus division when the communication graph is complete.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s00182-010-0245-7
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal International Journal of Game Theory.

Volume (Year): 40 (2011)
Issue (Month): 2 (May)
Pages: 331-349

as
in new window

Handle: RePEc:spr:jogath:v:40:y:2011:i:2:p:331-349
Contact details of provider: Web page: http://link.springer.de/link/service/journals/00182/index.htm

Order Information: Web: http://link.springer.de/orders.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2008. "The Average Tree Solution for Cooperative Games with Communication Structure," Discussion Paper 2008-73, Tilburg University, Center for Economic Research.
  2. Fabien Lange & Michel Grabisch, 2006. "Values on regular games under Kirchhoff’s laws," Working Paper Series 0807, Óbuda University, Keleti Faculty of Business and Management, revised Nov 2008.
  3. HERINGS, P. Jean-Jacques & van der LAAN, Gerard & TALMAN, Dolf, . "The average tree solution for cycle-free graph games," CORE Discussion Papers RP -2155, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Gabrielle Demange, 2004. "On group stability in hierarchies and networks," Post-Print halshs-00581662, HAL.
  5. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer, vol. 33(2), pages 349-364, November.
  6. Mishra, D. & Talman, A.J.J., 2010. "A characterization of the average tree solution for cycle-free graph games," Other publications TiSEM 6cab0e52-fe09-4428-8df6-0, Tilburg University, School of Economics and Management.
  7. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer, vol. 21(3), pages 249-66.
  8. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer, vol. 20(3), pages 277-93.
  9. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
  10. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:40:y:2011:i:2:p:331-349. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.