IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v196y2012i1p27-5110.1007-s10479-012-1150-1.html
   My bibliography  Save this article

The average tree solution for multi-choice forest games

Author

Listed:
  • S. Béal

    ()

  • A. Lardon

    ()

  • E. Rémila

    ()

  • P. Solal

    ()

Abstract

In this article we study cooperative multi-choice games with limited cooperation possibilities, represented by an undirected forest on the player set. Players in the game can cooperate if they are connected in the forest. We introduce a new (single-valued) solution concept which is a generalization of the average tree solution defined and characterized by Herings et al. (Games Econ. Behav. 62:77–92, 2008 ) for TU-games played on a forest. Our solution is characterized by component efficiency, component fairness and independence on the greatest activity level. It belongs to the precore of a restricted multi-choice game whenever the underlying multi-choice game is superadditive and isotone. We also link our solution with the hierarchical outcomes (Demange in J. Polit. Econ. 112:754–778, 2004 ) of some particular TU-games played on trees. Finally, we propose two possible economic applications of our average tree solution. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
  • Handle: RePEc:spr:annopr:v:196:y:2012:i:1:p:27-51:10.1007/s10479-012-1150-1
    DOI: 10.1007/s10479-012-1150-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1150-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michel Grabisch & Lijue Xie, 2007. "A new approach to the core and Weber set of multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 491-512, December.
    2. Debasis Mishra & A. Talman, 2010. "A characterization of the average tree solution for tree games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 105-111, March.
    3. Hwang, Yan-An & Liao, Yu-Hsien, 2008. "Potential approach and characterizations of a Shapley value in multi-choice games," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 321-335, November.
    4. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    5. Albizuri, M.J. & Aurrecoechea, J. & Zarzuelo, J.M., 2006. "Configuration values: Extensions of the coalitional Owen value," Games and Economic Behavior, Elsevier, vol. 57(1), pages 1-17, October.
    6. José Zarzuelo & Marco Slikker & Flip Klijn, 1999. "Characterizations of a multi-choice value," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 521-532.
    7. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    8. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the shapley value: a new approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 153-167, February.
    9. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    10. Calvo, Emilio & Santos, Juan Carlos, 2000. "A value for multichoice games," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 341-354, November.
    11. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    12. Derks, Jean & Peters, Hans, 1993. "A Shapley Value for Games with Restricted Coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 351-360.
    13. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    14. M. Albizuri, 2009. "The multichoice coalition value," Annals of Operations Research, Springer, vol. 172(1), pages 363-374, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    2. repec:spr:annopr:v:264:y:2018:i:1:d:10.1007_s10479-017-2661-6 is not listed on IDEAS
    3. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    4. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.

    More about this item

    Keywords

    Average tree solution; Communication graph; (Pre-)core; Hierarchical outcomes; Multi-choice games;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:196:y:2012:i:1:p:27-51:10.1007/s10479-012-1150-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.