IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v196y2009i3p1008-1014.html
   My bibliography  Save this article

Axiomatizations of the Shapley value for games on augmenting systems

Author

Listed:
  • Bilbao, J.M.
  • Ordóñez, M.

Abstract

This paper deals with cooperative games in which only certain coalitions are allowed to form. There have been previous models developed to confront the problem of unallowable coalitions. Games restricted by a communication graph were introduced by Myerson and Owen. In their model, the feasible coalitions are those that induce connected subgraphs. Another type of model is introduced in Gilles, Owen and van den Brink. In their model, the possibilities of coalition formation are determined by the positions of the players in a so-called permission structure. Faigle proposed another model for cooperative games defined on lattice structures. We introduce a combinatorial structure called augmenting system which is a generalization of the antimatroid structure and the system of connected subgraphs of a graph. In this framework, the Shapley value of games on augmenting systems is introduced and two axiomatizations of this value are showed.

Suggested Citation

  • Bilbao, J.M. & Ordóñez, M., 2009. "Axiomatizations of the Shapley value for games on augmenting systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1008-1014, August.
  • Handle: RePEc:eee:ejores:v:196:y:2009:i:3:p:1008-1014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00388-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamiache, Gerard, 1999. "A Value with Incomplete Communication," Games and Economic Behavior, Elsevier, vol. 26(1), pages 59-78, January.
    2. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Other publications TiSEM 5a8473e4-1df7-42df-ad53-f, Tilburg University, School of Economics and Management.
    3. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    4. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    5. Bilbao, J. M., 1998. "Axioms for the Shapley value on convex geometries," European Journal of Operational Research, Elsevier, vol. 110(2), pages 368-376, October.
    6. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Csóka, Péter & Illés, Ferenc & Solymosi, Tamás, 2022. "On the Shapley value of liability games," European Journal of Operational Research, Elsevier, vol. 300(1), pages 378-386.
    2. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    3. Selçuk, Özer & Suzuki, Takamasa & Talman, Dolf, 2013. "Equivalence and axiomatization of solutions for cooperative games with circular communication structure," Economics Letters, Elsevier, vol. 121(3), pages 428-431.
    4. Encarnación Algaba & René Brink & Chris Dietz, 2017. "Power Measures and Solutions for Games Under Precedence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 1008-1022, March.
    5. Guangming Wang & Zeguang Cui & Erfang Shan, 2022. "An Axiomatization of the Value α for Games Restricted by Augmenting Systems," Mathematics, MDPI, vol. 10(15), pages 1-9, August.
    6. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.
    7. René van den Brink, 2017. "Games with a Permission Structure: a survey on generalizations and applications," Tinbergen Institute Discussion Papers 17-016/II, Tinbergen Institute.
    8. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    9. Koshevoy, G.A. & Suzuki, T. & Talman, A.J.J., 2013. "Solutions For Games With General Coalitional Structure And Choice Sets," Other publications TiSEM a831011f-430e-4e82-b6f6-5, Tilburg University, School of Economics and Management.
    10. Encarnacion Algaba & René van den Brink & Chris Dietz, 2015. "Power Measures and Solutions for Games under Precedence Constraints," Tinbergen Institute Discussion Papers 15-007/II, Tinbergen Institute.
    11. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.
    12. Zhengxing Zou & Qiang Zhang & Surajit Borkotokey & Xiaohui Yu, 2020. "The extended Shapley value for generalized cooperative games under precedence constraints," Operational Research, Springer, vol. 20(2), pages 899-925, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takashi Ui & Hiroyuki Kojima & Atsushi Kajii, 2011. "The Myerson value for complete coalition structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 427-443, December.
    2. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.
    3. Labreuche, Christophe, 2011. "Interaction indices for games on combinatorial structures with forbidden coalitions," European Journal of Operational Research, Elsevier, vol. 214(1), pages 99-108, October.
    4. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    5. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    6. Slikker, M. & Gilles, R.P. & Norde, H.W. & Tijs, S.H., 2000. "Directed Communication Networks," Other publications TiSEM 00f2df6e-3a8e-4ed3-84cf-2, Tilburg University, School of Economics and Management.
    7. Herings, P. Jean-Jacques & van der Laan, Gerard & Talman, Dolf, 2007. "The socially stable core in structured transferable utility games," Games and Economic Behavior, Elsevier, vol. 59(1), pages 85-104, April.
    8. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    9. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    10. Algaba, A. & Bilbao, J.M. & van den Brink, J.R. & Jiménez-Losada, A., 2000. "Cooperative Games on Antimatroids," Discussion Paper 2000-124, Tilburg University, Center for Economic Research.
    11. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
    12. Meng, Fanyong & Chen, Xiaohong & Zhang, Qiang, 2015. "A coalitional value for games on convex geometries with a coalition structure," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 605-614.
    13. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    14. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    15. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    16. Slikker, M. & Gilles, R.P. & Norde, H.W. & Tijs, S.H., 2000. "Directed Communication Networks," Discussion Paper 2000-84, Tilburg University, Center for Economic Research.
    17. Algaba, A. & Bilbao, J.M. & van den Brink, J.R. & Jiménez-Losada, A., 2000. "Cooperative Games on Antimatroids," Other publications TiSEM 907b4b44-90f9-4faa-9473-8, Tilburg University, School of Economics and Management.
    18. Slikker, Marco & Gilles, Robert P. & Norde, Henk & Tijs, Stef, 2005. "Directed networks, allocation properties and hierarchy formation," Mathematical Social Sciences, Elsevier, vol. 49(1), pages 55-80, January.
    19. Sylvain Béal & Issofa Moyouwou & Eric Rémila & Phillippe Solal, 2018. "Cooperative games on intersection closed systems and the Shapley value," Working Papers 2018-06, CRESE.
    20. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 2007. "Distributing Dividends in Games with Ordered Players," Tinbergen Institute Discussion Papers 06-114/1, Tinbergen Institute.

    More about this item

    Keywords

    Augmenting system Shapley value;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:196:y:2009:i:3:p:1008-1014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.