IDEAS home Printed from https://ideas.repec.org/p/aoz/wpaper/110.html
   My bibliography  Save this paper

Stable Decompositions of Coalition Formation Games

Author

Listed:
  • Agustín G. Bonifacio

    (Universidad Nacional de San Luis/CONICET)

  • Elena Inarra

    (University of the Basque Country)

  • Pablo Neme

    (Universidad Nacional de San Luis/CONICET)

Abstract

It is known that a coalition formation game may not have a stable coalition structure. In this study we propose a new solution concept for these games, which we call “stable decomposition”, and show that each game has at least one. This solution consists of a collection of coalitions organized in sets that “protect” each other in a stable way. When sets of this collection are singletons, the stable decomposition can be identified with a stable coalition structure. As an application, we study convergence to stability in coalition formation games.

Suggested Citation

  • Agustín G. Bonifacio & Elena Inarra & Pablo Neme, 2022. "Stable Decompositions of Coalition Formation Games," Working Papers 110, Red Nacional de Investigadores en Economía (RedNIE).
  • Handle: RePEc:aoz:wpaper:110
    as

    Download full text from publisher

    File URL: https://rednie.eco.unc.edu.ar/files/DT/110.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvin E. Roth, 2018. "Marketplaces, Markets, and Market Design," American Economic Review, American Economic Association, vol. 108(7), pages 1609-1658, July.
    2. Klaus, Bettina & Klijn, Flip, 2005. "Stable matchings and preferences of couples," Journal of Economic Theory, Elsevier, vol. 121(1), pages 75-106, March.
    3. Chung, Kim-Sau, 2000. "On the Existence of Stable Roommate Matchings," Games and Economic Behavior, Elsevier, vol. 33(2), pages 206-230, November.
    4. Hart, Sergiu & Kurz, Mordecai, 1983. "Endogenous Formation of Coalitions," Econometrica, Econometric Society, vol. 51(4), pages 1047-1064, July.
    5. Iñarra, E. & Larrea, C. & Molis, E., 2013. "Absorbing sets in roommate problems," Games and Economic Behavior, Elsevier, vol. 81(C), pages 165-178.
    6. Roth, Alvin E & Vande Vate, John H, 1990. "Random Paths to Stability in Two-Sided Matching," Econometrica, Econometric Society, vol. 58(6), pages 1475-1480, November.
    7. Diamantoudi, Effrosyni & Miyagawa, Eiichi & Xue, Licun, 2004. "Random paths to stability in the roommate problem," Games and Economic Behavior, Elsevier, vol. 48(1), pages 18-28, July.
    8. Jackson, Matthew O. & Watts, Alison, 2002. "The Evolution of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 106(2), pages 265-295, October.
    9. Hakan İnal, 2015. "Core of coalition formation games and fixed-point methods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 745-763, December.
    10. Gallo, Oihane & Inarra, Elena, 2018. "Rationing rules and stable coalition structures," Theoretical Economics, Econometric Society, vol. 13(3), September.
    11. Kalai, Ehud & Schmeidler, David, 1977. "An admissible set occurring in various bargaining situations," Journal of Economic Theory, Elsevier, vol. 14(2), pages 402-411, April.
    12. Olaizola, Norma & Valenciano, Federico, 2014. "Asymmetric flow networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 566-579.
      • Olaizola Ortega, María Norma & Valenciano Llovera, Federico, 2012. "Asymmetric flow networks," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    13. Marek Pycia, 2012. "Stability and Preference Alignment in Matching and Coalition Formation," Econometrica, Econometric Society, vol. 80(1), pages 323-362, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agustin G. Bonifacio & Elena Inarra & Pablo Neme, 2020. "A characterization of absorbing sets in coalition formation games," Papers 2009.11689, arXiv.org, revised May 2024.
    2. Jean-Jacques Herings, P. & Mauleon, Ana & Vannetelbosch, Vincent, 2017. "Stable sets in matching problems with coalitional sovereignty and path dominance," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 14-19.
    3. Ana Mauleon & Nils Roehl & Vincent Vannetelbosch, 2014. "Constitutions and Social Networks," Working Papers CIE 74, Paderborn University, CIE Center for International Economics.
    4. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    5. Nax, Heinrich H. & Pradelski, Bary S. R., 2015. "Evolutionary dynamics and equitable core selection in assignment games," LSE Research Online Documents on Economics 65428, London School of Economics and Political Science, LSE Library.
    6. Klaus, B.E. & Klijn, F. & Walzl, M., 2007. "The evolution of roommate networks: a comment on Jackson and Watts JET (2002)," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Emiliya Lazarova & Dinko Dimitrov, 2017. "Paths to stability in two-sided matching under uncertainty," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 29-49, March.
    8. Konishi, Hideo & Unver, M. Utku, 2006. "Credible group stability in many-to-many matching problems," Journal of Economic Theory, Elsevier, vol. 129(1), pages 57-80, July.
    9. Peter Biro & Elena Iñarra & Elena Molis, 2014. "A new solution for the roommate problem. The Q-stable matchings," ThE Papers 14/04, Department of Economic Theory and Economic History of the University of Granada..
    10. Ana Mauleon & Elena Molis & Vincent Vannetelbosch & Wouter Vergote, 2014. "Dominance invariant one-to-one matching problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 925-943, November.
    11. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, April.
    12. Biró, Péter & Iñarra, Elena & Molis, Elena, 2016. "A new solution concept for the roommate problem: Q-stable matchings," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 74-82.
    13. José Luis Contreras & Juan Pablo Torres-Martínez, 2021. "The roommate problem with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 149-165, March.
    14. Iñarra García, María Elena & Larrea Jaurrieta, María Concepción & Molis Bañales, Elena, 2007. "The Stability of the Roommate Problem Revisited," IKERLANAK 2007-30, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    15. Burak Can & Bettina Klaus, 2013. "Consistency and population sensitivity properties in marriage and roommate markets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(4), pages 835-862, October.
    16. Mauleon, Ana & Roehl, Nils & Vannetelbosch, Vincent, 2019. "Paths to stability for overlapping group structures," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 19-24.
    17. Imamura, Kenzo & Konishi, Hideo & Pan, Chen-Yu, 2023. "Stability in matching with externalities: Pairs competition and oligopolistic joint ventures," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 270-286.
    18. Thomas Demuynck & P. Jean‐Jacques Herings & Riccardo D. Saulle & Christian Seel, 2019. "The Myopic Stable Set for Social Environments," Econometrica, Econometric Society, vol. 87(1), pages 111-138, January.
    19. Korpela, Ville & Lombardi, Michele & Saulle, Riccardo D., 2024. "Designing rotation programs: Limits and possibilities," Games and Economic Behavior, Elsevier, vol. 143(C), pages 77-102.
    20. Roth, Alvin E. & Sonmez, Tayfun & Utku Unver, M., 2005. "Pairwise kidney exchange," Journal of Economic Theory, Elsevier, vol. 125(2), pages 151-188, December.

    More about this item

    Keywords

    Coalition formation; matching; absorbing sets; stable decompositions.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.