IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v33y2014i5-6p553-574.html
   My bibliography  Save this article

Misspecification Testing: Non-Invariance of Expectations Models of Inflation

Author

Listed:
  • Jennifer L. Castle
  • Jurgen A. Doornik
  • David F. Hendry
  • Ragnar Nymoen

Abstract

Many economic models (such as the new-Keynesian Phillips curve, NKPC) include expected future values, often estimated after replacing the expected value by the actual future outcome, using Instrumental Variables (IV) or Generalized Method of Moments (GMM). Although crises, breaks, and regime shifts are relatively common, the underlying theory does not allow for their occurrence. We show the consequences for such models of breaks in data processes, and propose an impulse-indicator saturation test of such specifications, applied to USA and Euro-area NKPCs.

Suggested Citation

  • Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Ragnar Nymoen, 2014. "Misspecification Testing: Non-Invariance of Expectations Models of Inflation," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 553-574, August.
  • Handle: RePEc:taf:emetrv:v:33:y:2014:i:5-6:p:553-574
    DOI: 10.1080/07474938.2013.825137
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2013.825137
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2013.825137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert F. & Hendry, David F., 1993. "Testing superexogeneity and invariance in regression models," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 119-139, March.
    2. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    2. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    3. Haraldsen, Kristine Wika & Ragnar, Nymoen & Sparrman, Victoria, 2019. "Labour market institutions, shocks and the employment rate," Memorandum 6/2019, Oslo University, Department of Economics.
    4. Philip Hans Franses, 2019. "Model‐based forecast adjustment: With an illustration to inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(2), pages 73-80, March.
    5. Melnick, Rafi & Strohsal, Till, 2017. "Disinflation in steps and the Phillips curve: Israel 1986–2015," Journal of Macroeconomics, Elsevier, vol. 53(C), pages 145-161.
    6. Mariano Kulish & Adrian Pagan, 2016. "Issues in Estimating New Keynesian Phillips Curves in the Presence of Unknown Structural Change," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1251-1270, August.
    7. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2020. "Robust Discovery of Regression Models," Economics Papers 2020-W04, Economics Group, Nuffield College, University of Oxford.
    8. David F. Hendry, 2020. "A Short History of Macro-econometric Modelling," Economics Papers 2020-W01, Economics Group, Nuffield College, University of Oxford.
    9. Kristine Wika Haraldsen & Ragnar Nymoen & Victoria Sparrman, 2019. "Labour market institutions, shocks and the employment rate," Discussion Papers 901, Statistics Norway, Research Department.
    10. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hendry & Grayham E. Mizon, 2012. "Forecasting from Structural Econometric Models," Economics Series Working Papers 597, University of Oxford, Department of Economics.
    2. Hendry, David F. & Johansen, Søren, 2015. "Model Discovery And Trygve Haavelmo’S Legacy," Econometric Theory, Cambridge University Press, vol. 31(1), pages 93-114, February.
    3. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    4. Ericsson, Neil R., 2017. "Economic forecasting in theory and practice: An interview with David F. Hendry," International Journal of Forecasting, Elsevier, vol. 33(2), pages 523-542.
    5. Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
    6. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    7. Castle, Jennifer L. & Hendry, David F., 2014. "Model selection in under-specified equations facing breaks," Journal of Econometrics, Elsevier, vol. 178(P2), pages 286-293.
    8. Rocha, Jordano Vieira & Pereira, Pedro L. Valls, 2015. "Forecast comparison with nonlinear methods for Brazilian industrial production," Textos para discussão 397, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    9. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    10. Hendry David F & Mizon Grayham E, 2011. "Econometric Modelling of Time Series with Outlying Observations," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-26, February.
    11. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    12. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    13. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    14. Jennifer L. Castle & Michael P. Clements & David F. Hendry, 2016. "An Overview of Forecasting Facing Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 3-23, September.
    15. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.

    More about this item

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:33:y:2014:i:5-6:p:553-574. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.