IDEAS home Printed from https://ideas.repec.org/r/eee/resene/v26y2004i1p77-97.html
   My bibliography  Save this item

What is driving China's decline in energy intensity?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  2. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
  3. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
  4. Gritli, Mohamed Ilyes & Charfi, Fatma Marrakchi, 2023. "The determinants of oil consumption in Tunisia: Fresh evidence from NARDL approach and asymmetric causality test," Energy, Elsevier, vol. 284(C).
  5. Adom, Philip Kofi, 2015. "Determinants of energy intensity in South Africa: Testing for structural effects in parameters," Energy, Elsevier, vol. 89(C), pages 334-346.
  6. Huang, Yuanxi & Todd, Daniel, 2010. "The energy implications of Chinese regional disparities," Energy Policy, Elsevier, vol. 38(11), pages 7531-7538, November.
  7. Jonathan Perraton, 2006. "Heavy Constraints on a “Weightless World”?," American Journal of Economics and Sociology, Wiley Blackwell, vol. 65(3), pages 641-691, July.
  8. Gui, Shusen & Wu, Chunyou & Qu, Ying & Guo, Lingling, 2017. "Path analysis of factors impacting China's CO2 emission intensity: Viewpoint on energy," Energy Policy, Elsevier, vol. 109(C), pages 650-658.
  9. Okajima, Shigeharu & Okajima, Hiroko, 2013. "Analysis of energy intensity in Japan," Energy Policy, Elsevier, vol. 61(C), pages 574-586.
  10. Frank Jotzo, 2010. "Comparing the Copenhagen Emissions Targets," CCEP Working Papers 0110, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
  11. Fisher-Vanden, Karen & Ho, Mun S., 2007. "How do market reforms affect China's responsiveness to environmental policy?," Journal of Development Economics, Elsevier, vol. 82(1), pages 200-233, January.
  12. Pauline Lacour & Catherine Figuière, 2011. "Environmentally friendly technologies transfers through trade flows from Japan to China - An approach by bilateral trade in environmental goods," Post-Print halshs-00628832, HAL.
  13. Frank Jotzo, 2008. "Climate Change Economics and Policy in the Asia Pacific," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 22(2), pages 14-30, November.
  14. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
  15. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
  16. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
  17. Verbič, Miroslav & Filipović, Sanja & Radovanović, Mirjana, 2017. "Electricity prices and energy intensity in Europe," Utilities Policy, Elsevier, vol. 47(C), pages 58-68.
  18. Yuan, Jiahai & Kang, Junjie & Yu, Cong & Hu, Zhaoguang, 2011. "Energy conservation and emissions reduction in China—Progress and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4334-4347.
  19. Saten Kumar, 2011. "Cointegration and the demand for energy in Fiji," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(1), pages 85-97.
  20. Wen, Huwei & Li, Nuoyan & Lee, Chien-Chiang, 2021. "Energy intensity of manufacturing enterprises under competitive pressure from the informal sector: Evidence from developing and emerging countries," Energy Economics, Elsevier, vol. 104(C).
  21. Adom, Philip Kofi, 2015. "Asymmetric impacts of the determinants of energy intensity in Nigeria," Energy Economics, Elsevier, vol. 49(C), pages 570-580.
  22. Ma, Hengyun & Oxley, Les & Gibson, John, 2010. "China's energy economy: A survey of the literature," Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
  23. Cattaneo, Cristina & Manera, Matteo & Scarpa, Elisa, 2011. "Industrial coal demand in China: A provincial analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 12-35, January.
  24. Yaya Keho, 2016. "Do Foreign Direct Investment and Trade lead to Lower Energy Intensity? Evidence from Selected African Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 1-5.
  25. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
  26. Alam, Md. Mahmudul & Murad, Md. Wahid, 2020. "The impacts of economic growth, trade openness and technological progress on renewable energy use in organization for economic co-operation and development countries," Renewable Energy, Elsevier, vol. 145(C), pages 382-390.
  27. Chen, Wenhui & Lei, Yalin, 2018. "The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression," Renewable Energy, Elsevier, vol. 123(C), pages 1-14.
  28. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
  29. WEI Chu & SHEN Man-hong, 2009. "What is the driving force of the energy productivity? Evidence from China," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 4(2), pages 265-273, June.
  30. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
  31. Fan, Ying & Xia, Yan, 2012. "Exploring energy consumption and demand in China," Energy, Elsevier, vol. 40(1), pages 23-30.
  32. Bishwanath Goldar, 2010. "Energy Intensity of Indian Manufacturing Firms: Effect of Energy Prices, Technology and Firm Characteristics," Working Papers id:2483, eSocialSciences.
  33. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
  34. Bamati, Narges & Raoofi, Ali, 2020. "Development level and the impact of technological factor on renewable energy production," Renewable Energy, Elsevier, vol. 151(C), pages 946-955.
  35. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
  36. Crompton, Paul & Wu, Yanrui, 2005. "Energy consumption in China: past trends and future directions," Energy Economics, Elsevier, vol. 27(1), pages 195-208, January.
  37. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
  38. Cantos, José Mª & Balsalobre Lorente, Daniel, 2013. "Incidencia del gasto público en I+D+i energético sobre la corrección medioambiental en España/Impact of Public R&D in Energy on Environmental Correction in Spain," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 31, pages 93-126, Enero.
  39. Mohd Haizam Mohd Saudi & Obsatar Sinaga & Djoko Roespinoedji & Erlane K. Ghani, 2019. "The Impact of Technological Innovation on Energy Intensity: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 11-17.
  40. Jobling, Andrew & Jamasb, Tooraj, 2017. "Price volatility and demand for oil: A comparative analysis of developed and developing countries," Economic Analysis and Policy, Elsevier, vol. 53(C), pages 96-113.
  41. Fisher-Vanden, Karen & Jefferson, Gary H. & Jingkui, Ma & Jianyi, Xu, 2006. "Technology development and energy productivity in China," Energy Economics, Elsevier, vol. 28(5-6), pages 690-705, November.
  42. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
  43. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
  44. Antonietti, Roberto & Fontini, Fulvio, 2019. "Does energy price affect energy efficiency? Cross-country panel evidence," Energy Policy, Elsevier, vol. 129(C), pages 896-906.
  45. Tsai, I-Chun, 2024. "Fossil energy risk exposure of the UK electricity system: The moderating role of electricity generation mix and energy source," Energy Policy, Elsevier, vol. 188(C).
  46. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
  47. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
  48. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
  49. Perkins, Richard & Neumayer, Eric, 2009. "How do domestic attributes affect international spillovers of CO2-efficiency?," LSE Research Online Documents on Economics 37611, London School of Economics and Political Science, LSE Library.
  50. Ang, James B., 2009. "CO2 emissions, research and technology transfer in China," Ecological Economics, Elsevier, vol. 68(10), pages 2658-2665, August.
  51. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
  52. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
  53. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
  54. Wu, Anbing & Chen, Junying & Zhang, Yanyan, 2023. "Natural resources and energy resources prices an answer to energy insecurity? The role of mineral, forest, coal resources and financial development," Resources Policy, Elsevier, vol. 87(PA).
  55. Yuxiang, Karl & Chen, Zhongchang, 2010. "Government expenditure and energy intensity in China," Energy Policy, Elsevier, vol. 38(2), pages 691-694, February.
  56. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
  57. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
  58. Arthur A. van Benthem, 2015. "Energy Leapfrogging," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 93-132.
  59. Qizhen Wang & Suxia Liu, 2022. "How Do FDI and Technological Innovation Affect Carbon Emission Efficiency in China?," Energies, MDPI, vol. 15(23), pages 1-16, December.
  60. Md Samsul Alam & Nicholas Apergis & Sudharshan Reddy Paramati & Jianchun Fang, 2021. "The impacts of R&D investment and stock markets on clean‐energy consumption and CO2 emissions in OECD economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 4979-4992, October.
  61. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
  62. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
  63. Kang, Jijun & Yu, Chenyang & Xue, Rui & Yang, Dong & Shan, Yuli, 2022. "Can regional integration narrow city-level energy efficiency gap in China?," Energy Policy, Elsevier, vol. 163(C).
  64. Liu, Xiaoqian & Wang, Chang'an & Wu, Haitao & Yang, Cunyi & Albitar, Khaldoon, 2023. "The impact of the new energy demonstration city construction on energy consumption intensity: Exploring the sustainable potential of China's firms," Energy, Elsevier, vol. 283(C).
  65. Petrović, Predrag & Lobanov, Mikhail M., 2022. "Energy intensity and foreign direct investment nexus: Advanced panel data analysis," Applied Energy, Elsevier, vol. 311(C).
  66. Celil Ayd n & mer Esen, 2017. "Does Too Much Energy Consumption Harm Economic Growth for Turkish Republics in The Transition Process? New Evidence on Threshold Effects," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 34-43.
  67. repec:dau:papers:123456789/6801 is not listed on IDEAS
  68. Jin Zhang & David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, , vol. 37(1_suppl), pages 29-54, January.
  69. Herrerias, M.J. & Cuadros, A. & Orts, V., 2013. "Energy intensity and investment ownership across Chinese provinces," Energy Economics, Elsevier, vol. 36(C), pages 286-298.
  70. Cao, Jing & Karplus, Valerie J., 2014. "Firm-level determinants of energy and carbon intensity in China," Energy Policy, Elsevier, vol. 75(C), pages 167-178.
  71. Pan, Xiongfeng & Ai, Bowei & Li, Changyu & Pan, Xianyou & Yan, Yaobo, 2019. "Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 428-435.
  72. Igor Bagayev & Boris Najman, 2013. "Less quality more costs: Does local power sector reliability matter for electricity intensity?," Erudite Working Paper 2013-03, Erudite.
  73. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2006. "Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects," Energy Policy, Elsevier, vol. 34(18), pages 3549-3572, December.
  74. Ma, Guangcheng & Qin, Jiahong & Zhang, Yumeng, 2023. "Does the carbon emissions trading system reduce carbon emissions by promoting two-way FDI in developing countries? Evidence from Chinese listed companies and cities," Energy Economics, Elsevier, vol. 120(C).
  75. Fu, Tong & Chang, Dongfeng & Miao, Chenglin, 2022. "Fuel regulation in a developing country: An interventional perspective," Energy Economics, Elsevier, vol. 113(C).
  76. Lin, Boqiang & Du, Zhili, 2017. "Promoting energy conservation in China's metallurgy industry," Energy Policy, Elsevier, vol. 104(C), pages 285-294.
  77. Adom, Philip K. & Kwakwa, Paul Adjei, 2014. "Effects of changing trade structure and technical characteristics of the manufacturing sector on energy intensity in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 475-483.
  78. Lo, Kevin & Wang, Mark Y., 2013. "Energy conservation in China’s Twelfth Five-Year Plan period: Continuation or paradigm shift?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 499-507.
  79. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
  80. Adom, Philip Kofi & Amuakwa-Mensah, Franklin, 2016. "What drives the energy saving role of FDI and industrialization in East Africa?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 925-942.
  81. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
  82. Bronwyn H. Hall & Christian Helmers, 2010. "The role of patent protection in (clean/green) technology transfer," NBER Working Papers 16323, National Bureau of Economic Research, Inc.
  83. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
  84. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
  85. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
  86. Fan, Maoqing & Zheng, Haitao, 2019. "The impact of factor price changes and technological progress on the energy intensity of China's industries: Kalman filter-based econometric method," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 340-353.
  87. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
  88. Shahid, Rabia & Shahid, Humera & Shijie, Li & Jian, Gao, 2024. "Developing nexus between economic opening-up, environmental regulations, rent of natural resources, green innovation, and environmental upgrading of China - empirical analysis using ARDL bound-testing," Innovation and Green Development, Elsevier, vol. 3(1).
  89. Andrews-Speed, Philip, 2009. "China's ongoing energy efficiency drive: Origins, progress and prospects," Energy Policy, Elsevier, vol. 37(4), pages 1331-1344, April.
  90. Zhou, Yi & Zhuo, Chengfeng & Deng, Feng, 2021. "Can the rise of the manufacturing value chain be the driving force of energy conservation and emission reduction in China?," Energy Policy, Elsevier, vol. 156(C).
  91. Dong, Yanli & Ishikawa, Masanobu & Liu, Xianbing & Wang, Can, 2010. "An analysis of the driving forces of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(11), pages 6784-6792, November.
  92. Herrerias, M.J. & Cuadros, A. & Luo, D., 2016. "Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions," Applied Energy, Elsevier, vol. 162(C), pages 1374-1384.
  93. Shenghao Feng & Keyu Zhang & Xiujian Peng, 2021. "Elasticity of Substitution Between Electricity and Non-Electric Energy in the Context of Carbon Neutrality in China," Centre of Policy Studies/IMPACT Centre Working Papers g-323, Victoria University, Centre of Policy Studies/IMPACT Centre.
  94. Yu, Lu & Liu, Yinwei & Niu, Yiran & Xiao, Zumian, 2023. "Greener together: The impact of China's mixed-ownership reform on firm carbon emissions," Energy Policy, Elsevier, vol. 180(C).
  95. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
  96. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
  97. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2017. "Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis," Energy Economics, Elsevier, vol. 62(C), pages 347-356.
  98. Junyi Shen & Tatsuyoshi Saijo, 2007. "Does energy efficiency label alter consumers f purchase decision? A latent class approach on Shanghai data," OSIPP Discussion Paper 07E005, Osaka School of International Public Policy, Osaka University.
  99. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
  100. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
  101. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
  102. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
  103. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
  104. Geoffrey J. Blanford & Richard G. Richels & Thomas F. Rutherford, 2008. "Impact of Revised CO2 Growth Projections for China on Global Stabilization Goals," Working Papers 2008.68, Fondazione Eni Enrico Mattei.
  105. Kahrl, Fredrich & Roland-Holst, David, 2009. "Growth and structural change in China's energy economy," Energy, Elsevier, vol. 34(7), pages 894-903.
  106. Hong, Jin & Guo, Xiumei & Marinova, Dora & Yang, Fengli & Yu, Wentao, 2013. "Clean development mechanism in China: Regional distribution and prospects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 151-163.
  107. Zhang, Jing & Deng, Shihuai & Shen, Fei & Yang, Xinyao & Liu, Guodong & Guo, Hang & Li, Yuanwei & Hong, Xiao & Zhang, Yanzong & Peng, Hong & Zhang, Xiaohong & Li, Li & Wang, Yingjun, 2011. "Modeling the relationship between energy consumption and economy development in China," Energy, Elsevier, vol. 36(7), pages 4227-4234.
  108. Adom, Philip Kofi & Adams, Samuel, 2018. "Energy savings in Nigeria. Is there a way of escape from energy inefficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2421-2430.
  109. Sivek, Martin & Jirásek, Jakub & Kavina, Pavel & Vojnarová, Markéta & Kurková, Tereza & Bašová, Andrea, 2020. "Divorce after hundreds of years of marriage: Prospects for coal mining in the Czech Republic with regard to the European Union," Energy Policy, Elsevier, vol. 142(C).
  110. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
  111. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
  112. Shijin Wang, 2017. "Impact of FDI on energy efficiency: an analysis of the regional discrepancies in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1209-1222, January.
  113. Azhgaliyeva, Dina & Liu, Yang & Liddle, Brantley, 2020. "An empirical analysis of energy intensity and the role of policy instruments," Energy Policy, Elsevier, vol. 145(C).
  114. Deliang Pang & Hongwei Su, 2017. "Determinants of energy intensity in Chinese provinces," Energy & Environment, , vol. 28(4), pages 451-467, June.
  115. Wang, Zilong & Wang, Xinbin, 2022. "Research on the impact of green finance on energy efficiency in different regions of China based on the DEA-Tobit model," Resources Policy, Elsevier, vol. 77(C).
  116. Li, Sisi & Khan, Sufyan Ullah & Yao, Yao & Chen, George S. & Zhang, Lin & Salim, Ruhul & Huo, Jiaying, 2022. "Estimating the long-run crude oil demand function of China: Some new evidence and policy options," Energy Policy, Elsevier, vol. 170(C).
  117. Xiaohua Song & Caiping Zhao & Jingjing Han & Qi Zhang & Jinpeng Liu & Yuanying Chi, 2020. "Measurement and Influencing Factors Research of the Energy and Power Efficiency in China: Based on the Supply-Side Structural Reform Perspective," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
  118. Fan, Ying & Liao, Hua & Wei, Yi-Ming, 2007. "Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China," Energy Policy, Elsevier, vol. 35(4), pages 2287-2295, April.
  119. Salim, Ruhul & Yao, Yao & Chen, George & Zhang, Lin, 2017. "Can foreign direct investment harness energy consumption in China? A time series investigation," Energy Economics, Elsevier, vol. 66(C), pages 43-53.
  120. Yasmeen, Rizwana & Zhaohui, Cui & Hassan Shah, Wasi Ul & Kamal, Muhammad Abdul & Khan, Anwar, 2022. "Exploring the role of biomass energy consumption, ecological footprint through FDI and technological innovation in B&R economies: A simultaneous equation approach," Energy, Elsevier, vol. 244(PA).
  121. Shao, Jun & Wang, Lianghu, 2023. "Can new-type urbanization improve the green total factor energy efficiency? Evidence from China," Energy, Elsevier, vol. 262(PB).
  122. Hailemariam, Abebe & Ivanovski, Kris & Dzhumashev, Ratbek, 2022. "Does R&D investment in renewable energy technologies reduce greenhouse gas emissions?," Applied Energy, Elsevier, vol. 327(C).
  123. Decai Tang & Yan Zhang & Brandon J Bethel, 2020. "A Comprehensive Evaluation of Carbon Emission Reduction Capability in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 17(2), pages 1-16, January.
  124. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
  125. Filipović, Sanja & Verbič, Miroslav & Radovanović, Mirjana, 2015. "Determinants of energy intensity in the European Union: A panel data analysis," Energy, Elsevier, vol. 92(P3), pages 547-555.
  126. Santosh K. Sahu & Deepanjali Mehta, 2018. "Determinants Of Energy And Co2 Emission Intensities: A Study Of Manufacturing Firms In India," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 389-407, March.
  127. Xu, X.Y. & Ang, B.W., 2014. "Multilevel index decomposition analysis: Approaches and application," Energy Economics, Elsevier, vol. 44(C), pages 375-382.
  128. Frank Jotzo, 2006. "Quantifying uncertainties for emission targets," Economics and Environment Network Working Papers 0603, Australian National University, Economics and Environment Network.
  129. Su, Hongwei & Liang, Biming, 2021. "The impact of regional market integration and economic opening up on environmental total factor energy productivity in Chinese provinces," Energy Policy, Elsevier, vol. 148(PA).
  130. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
  131. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
  132. Vennemo, Haakon & Aunan, Kristin & Jianwu, He & Tao, Hu & Shantong, Li, 2009. "Benefits and costs to China of three different climate treaties," Resource and Energy Economics, Elsevier, vol. 31(3), pages 139-160, August.
  133. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
  134. Bu, Maoliang & Li, Shuang & Jiang, Lei, 2019. "Foreign direct investment and energy intensity in China: Firm-level evidence," Energy Economics, Elsevier, vol. 80(C), pages 366-376.
  135. Vennemo, Haakon & Aunan, Kristin & He, Jianwu & Hu, Tao & Li, Shantong & Rypd3al, Kristin, 2008. "Environmental impacts of China's WTO-accession," Ecological Economics, Elsevier, vol. 64(4), pages 893-911, February.
  136. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
  137. Aydin, Celil & Esen, Ömer, 2018. "Does the level of energy intensity matter in the effect of energy consumption on the growth of transition economies? Evidence from dynamic panel threshold analysis," Energy Economics, Elsevier, vol. 69(C), pages 185-195.
  138. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
  139. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
  140. Zha, Jianping & Tan, Ting & Fan, Rong & Xu, Han & Ma, Siqi, 2020. "How to reduce energy intensity to achieve sustainable development of China's transport sector? A cross-regional comparison analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
  141. Zha, Donglan & Zhou, Dequn & Ding, Ning, 2009. "The contribution degree of sub-sectors to structure effect and intensity effects on industry energy intensity in China from 1993 to 2003," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 895-902, May.
  142. Hille, Erik & Angerpointner, Cian, 2025. "Did geopolitical risks in supplier countries of fossil fuels lead to reduced domestic energy consumption? Evidence from Europe," Energy Policy, Elsevier, vol. 198(C).
  143. Huang, Junbing & Lian, Shijia & Qu, Ran & Luan, Bingjiang & Wang, Yajun, 2023. "Investigating the role of enterprises' property rights in China's provincial industrial energy intensity," Energy, Elsevier, vol. 282(C).
  144. Shiyi Chen, 2009. "Engine or drag: Can high energy consumption and CO 2 emission drive the sustainable development of Chinese industry?," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(4), pages 548-571, December.
  145. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
  146. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
  147. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
  148. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
  149. Wang, Keying & Wu, Meng & Sun, Yongping & Shi, Xunpeng & Sun, Ao & Zhang, Ping, 2019. "Resource abundance, industrial structure, and regional carbon emissions efficiency in China," Resources Policy, Elsevier, vol. 60(C), pages 203-214.
  150. Hübler, Michael & Keller, Andreas, 2010. "Energy savings via FDI? Empirical evidence from developing countries," Environment and Development Economics, Cambridge University Press, vol. 15(1), pages 59-80, February.
  151. Hang, Leiming & Tu, Meizeng, 2007. "The impacts of energy prices on energy intensity: Evidence from China," Energy Policy, Elsevier, vol. 35(5), pages 2978-2988, May.
  152. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
  153. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng & Wu, Junlong, 2009. "Research on the energy-saving effect of energy policies in China: 1982-2006," Energy Policy, Elsevier, vol. 37(7), pages 2475-2480, July.
  154. Li, Ke & Lin, Boqiang, 2015. "How does administrative pricing affect energy consumption and CO2 emissions in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 952-962.
  155. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
  156. Hu, Changshuai & Du, Dan & Huang, Junbing, 2023. "The driving effect of energy demand evolution: From the perspective of heterogeneity in technology," Energy, Elsevier, vol. 275(C).
  157. Alam, Md. Samsul & Atif, Muhammad & Chien-Chi, Chu & Soytaş, Uğur, 2019. "Does corporate R&D investment affect firm environmental performance? Evidence from G-6 countries," Energy Economics, Elsevier, vol. 78(C), pages 401-411.
  158. Steenhof, Paul A., 2006. "Decomposition of electricity demand in China's industrial sector," Energy Economics, Elsevier, vol. 28(3), pages 370-384, May.
  159. Pan, Xiongfeng & Uddin, Md. Kamal & Han, Cuicui & Pan, Xianyou, 2019. "Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh," Energy, Elsevier, vol. 171(C), pages 456-464.
  160. You, Jing, 2013. "China's challenge for decarbonized growth: Forecasts from energy demand models," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 652-668.
  161. Qin, Quande & Yu, Ying & Liu, Yuan & Zhou, Jianqing & Chen, Xiude, 2023. "Industrial agglomeration and energy efficiency: A new perspective from market integration," Energy Policy, Elsevier, vol. 183(C).
  162. Huang, Junbing & Wang, Yajun & Guo, Lili, 2022. "Energy intensity and energy-specific technological progress: A case study in Guangdong province of China," Renewable Energy, Elsevier, vol. 184(C), pages 990-1001.
  163. Maria Jesus Herrerias and Eric Girardin, 2013. "Seasonal Patterns of Energy in China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  164. Yan, Xiang & Xin, Boqing & Cheng, Changgao & Han, Zhiyong, 2024. "Unpacking energy consumption in China's urbanization: Industry development, population growth, and spatial expansion," Research in International Business and Finance, Elsevier, vol. 70(PA).
  165. Adom, Philip Kofi, 2016. "The transition between energy efficient and energy inefficient states in Cameroon," Energy Economics, Elsevier, vol. 54(C), pages 248-262.
  166. Andersson, Fredrik N.G. & Opper, Sonja & Khalid, Usman, 2018. "Are capitalists green? Firm ownership and provincial CO2 emissions in China," Energy Policy, Elsevier, vol. 123(C), pages 349-359.
  167. Lina Sineviciene & Iryna Sotnyk & Oleksandr Kubatko, 2017. "Determinants of energy efficiency and energy consumption of Eastern Europe post-communist economies," Energy & Environment, , vol. 28(8), pages 870-884, December.
  168. Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
  169. Bekun, Festus Victor & Fumey, Michael Provide & Staniewski, Marcin W. & Sun, Lipeng & Agboola, Philips O., 2025. "Energy intensive growth and the transition pathways: Insights into the role of renewable energy and open market conditions in developing countries," Energy, Elsevier, vol. 322(C).
  170. Amira Ben Hammamia & Ahlem Dakhlaoui & Abdessalem Abbassi, 2014. "Analysis of the Decomposition of Energy Intensity in Tunisia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(3), pages 420-426.
  171. João Paulo Bento, 2011. "Energy Savings via Foreign Direct Investment? - Empirical evidence from Portugal," Working Papers 2011/24, Maastricht School of Management.
  172. Raei, Hasan & Maleki, Abbas & Farajzadeh, Zakariya, 2024. "Analysis of energy policy reform in Iran: Energy and emission intensity changes," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1535-1557.
  173. Chen, Xiude & Qin, Quande & Wei, Y.-M., 2016. "Energy productivity and Chinese local officials’ promotions: Evidence from provincial governors," Energy Policy, Elsevier, vol. 95(C), pages 103-112.
  174. Sohag, Kazi & Begum, Rawshan Ara & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia," Energy, Elsevier, vol. 90(P2), pages 1497-1507.
  175. Šćepanović, Sanja & Warnier, Martijn & Nurminen, Jukka K., 2017. "The role of context in residential energy interventions: A meta review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1146-1168.
  176. Dayong Zhang & David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, , vol. 37(3), pages 137-158, July.
  177. Huang, Junbing & Lai, Yali & Wang, Yajun & Hao, Yu, 2020. "Energy-saving research and development activities and energy intensity in China: A regional comparison perspective," Energy, Elsevier, vol. 213(C).
  178. Rao, Amar & Lucey, Brian & Kumar, Satish, 2023. "Climate risk and carbon emissions: Examining their impact on key energy markets through asymmetric spillovers," Energy Economics, Elsevier, vol. 126(C).
  179. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
  180. Jiang, Zhujun & Lin, Boqiang, 2012. "China's energy demand and its characteristics in the industrialization and urbanization process," Energy Policy, Elsevier, vol. 49(C), pages 608-615.
  181. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
  182. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
  183. Zha, DongLan & Zhou, DeQun & Ding, Ning, 2012. "The determinants of aggregated electricity intensity in China," Applied Energy, Elsevier, vol. 97(C), pages 150-156.
  184. mer Esen, 2016. "Security of the Energy Supply in Turkey: Prospects, Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 281-289.
  185. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
  186. Stephen Taiwo Onifade & Bright Akwasi Gyamfi & Andrew Adewale Alola & Ilham Haouas, 2024. "Assessing the drivers of (non)conventional energy portfolios in the South Asian economies: The role of technological innovation and human development," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(3), pages 1762-1773, June.
  187. Petrović, Predrag & Filipović, Sanja & Radovanović, Mirjana, 2018. "Underlying causal factors of the European Union energy intensity: Econometric evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 216-227.
  188. Huang, Junbing & Chen, Xiang, 2020. "Domestic R&D activities, technology absorption ability, and energy intensity in China," Energy Policy, Elsevier, vol. 138(C).
  189. Liu, Wei & Zhan, Jinyan & Zhao, Fen & Wang, Pei & Li, Zhihui & Teng, Yanmin, 2018. "Changing trends and influencing factors of energy productivity growth: A case study in the Pearl River Delta Metropolitan Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 1-9.
  190. Massimo Filippini & Lin Zhang, 2013. "Measurement of the “Underlying energy efficiency” in Chinese provinces," CER-ETH Economics working paper series 13/183, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  191. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "The energy efficiency advantage of foreign-invested enterprises in China and the role of structural differences," China Economic Review, Elsevier, vol. 34(C), pages 225-235.
  192. Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).
  193. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
  194. Liu, Xianbing & Wang, Can & Zhang, Weishi & Suk, Sunhee & Sudo, Kinichi, 2013. "Company's affordability of increased energy costs due to climate policies: A survey by sector in China," Energy Economics, Elsevier, vol. 36(C), pages 419-430.
  195. Li, Wei & Sun, Wen & Li, Guomin & Jin, Baihui & Wu, Wen & Cui, Pengfei & Zhao, Guohao, 2018. "Transmission mechanism between energy prices and carbon emissions using geographically weighted regression," Energy Policy, Elsevier, vol. 115(C), pages 434-442.
  196. Cagno, Enrico & Trianni, Andrea, 2013. "Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises," Applied Energy, Elsevier, vol. 104(C), pages 276-285.
  197. Cheng-Yih Hong & Chen-Jung Hsu, 2018. "Economic Growth, Oil Consumption and Import Intensity: Factor Decomposition of Imported Crude Oil Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 152-156.
  198. Le Tang, 2020. "Energy prices and investment in energy efficiency: evidence from Chinese industry 1997–2004," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 34(2), pages 93-105, November.
  199. Li, Meng & Gao, Yuning & Liu, Shenglong, 2020. "China’s energy intensity change in 1997–2015: Non-vertical adjusted structural decomposition analysis based on input-output tables," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 222-236.
  200. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
  201. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
  202. Liu, Xianbing & Ishikawa, Masanobu & Wang, Can & Dong, Yanli & Liu, Wenling, 2010. "Analyses of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(3), pages 1510-1518, March.
  203. Liu, Xianbing & Niu, Dongjie & Bao, Cunkuan & Suk, Sunhee & Sudo, Kinichi, 2013. "Affordability of energy cost increases for companies due to market-based climate policies: A survey in Taicang, China," Applied Energy, Elsevier, vol. 102(C), pages 1464-1476.
  204. Yang, Shenglang & Shi, Xunpeng, 2018. "Intangible capital and sectoral energy intensity: Evidence from 40 economies between 1995 and 2007," Energy Policy, Elsevier, vol. 122(C), pages 118-128.
  205. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
  206. Fisher-Vanden, Karen & Jefferson, Gary H., 2008. "Technology diversity and development: Evidence from China's industrial enterprises," Journal of Comparative Economics, Elsevier, vol. 36(4), pages 658-672, December.
  207. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
  208. Wang, Chunhua, 2011. "Sources of energy productivity growth and its distribution dynamics in China," Resource and Energy Economics, Elsevier, vol. 33(1), pages 279-292, January.
  209. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
  210. Peng Hou & Yilin Li & Yong Tan & Yuanjie Hou, 2020. "Energy Price and Energy Efficiency in China: A Linear and Nonlinear Empirical Investigation," Energies, MDPI, vol. 13(16), pages 1-24, August.
  211. Wei Zheng & Patrick Paul Walsh, 2018. "Economic growth, urbanization and energy consumption," Working Papers 201817, Geary Institute, University College Dublin.
  212. Zhu, Junming & Niu, Limin & Ruth, Matthias & Shi, Lei, 2018. "Technological Change and Energy Efficiency in Large Chinese Firms," Ecological Economics, Elsevier, vol. 150(C), pages 241-250.
  213. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
  214. Wei Li & Tao Zhao & Yanan Wang & Fang Guo, 2017. "Investigating the learning effects of technological advancement on CO2 emissions: a regional analysis in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1211-1227, September.
  215. Hille, Erik & Oelker, Thomas J., 2023. "International expansion of renewable energy capacities: The role of innovation and choice of policy instruments," Ecological Economics, Elsevier, vol. 204(PA).
  216. Gu, Gaoxiang & Wang, Zheng, 2018. "Research on global carbon abatement driven by R&D investment in the context of INDCs," Energy, Elsevier, vol. 148(C), pages 662-675.
  217. Xueqin Lin & Dai Wang & Yuefang Si, 2015. "Spatially Differentiated Features of Coal Resource Utilisation Efficiency in China," Energy & Environment, , vol. 26(6-7), pages 1129-1145, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.