IDEAS home Printed from
   My bibliography  Save this article

What drives the energy saving role of FDI and industrialization in East Africa?


  • Adom, Philip Kofi
  • Amuakwa-Mensah, Franklin


Analysis of the unconditional impacts of foreign direct inflows (FDIs) and industrialization on energy intensity does not show the hidden roles of some economic conditions such as income and trade openness. In this study, we focused on the conditional impacts of FDIs and industrialization on energy productivity using a panel data consisting of thirteen (13) East African countries covering 1980–2011. The baseline result shows that higher income and a well-integrated economy are pro-energy productive, but FDIs and intense industrialization are anti-energy productive in the sub-region. This result remains robust even when we exclude the high income group and control for income group effects. Income significantly promotes energy productivity more in low income group than middle income group. Intense industrialization and FDIs significantly decreases energy productivity only in low income countries. Trade openness significantly promotes energy productivity only in middle income group. We have shown that FDIs and income, intense industrialization and FDIs, and intense industrialization and globalization are complementary forces that promote energy productivity in East Africa but this is more evident for the middle income group than the low income group in the sub-region. Based on the result, we recommend a quadruplet programme called the “Growth, Industrial, Foreign investment and Trade programme” (GIFTP). Last, our result suggests that unconditional analysis of energy productivity should not be seen as an end in itself but a basis for further analysis.

Suggested Citation

  • Adom, Philip Kofi & Amuakwa-Mensah, Franklin, 2016. "What drives the energy saving role of FDI and industrialization in East Africa?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 925-942.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:925-942
    DOI: 10.1016/j.rser.2016.07.039

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    2. Adom, Philip Kofi, 2015. "Determinants of energy intensity in South Africa: Testing for structural effects in parameters," Energy, Elsevier, vol. 89(C), pages 334-346.
    3. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
    4. Oecd, 2015. "Making Open Science a Reality," OECD Science, Technology and Industry Policy Papers 25, OECD Publishing.
    5. World Bank, 2015. "South Africa Economic Update, August 2015," World Bank Other Operational Studies 22413, The World Bank.
    6. Azam, Muhammad & Khan, Abdul Qayyum & Zaman, Khalid & Ahmad, Mehboob, 2015. "Factors determining energy consumption: Evidence from Indonesia, Malaysia and Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1123-1131.
    7. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
    8. Rafindadi, Abdulkadir Abdulrashid & Ozturk, Ilhan, 2016. "Effects of financial development, economic growth and trade on electricity consumption: Evidence from post-Fukushima Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1073-1084.
    9. World Bank, 2015. "Making the Most of Ports in West Africa," World Bank Other Operational Studies 24982, The World Bank.
    10. Azhar Khan, Muhammad & Zahir Khan, Muhammad & Zaman, Khalid & Naz, Lubna, 2014. "Global estimates of energy consumption and greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 336-344.
    11. Azam, Muhammad & Khan, Abdul Qayyum & Zafeiriou, Eleni & Arabatzis, Garyfallos, 2016. "Socio-economic determinants of energy consumption: An empirical survey for Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1556-1567.
    12. Herrerias, M.J. & Cuadros, A. & Orts, V., 2013. "Energy intensity and investment ownership across Chinese provinces," Energy Economics, Elsevier, vol. 36(C), pages 286-298.
    13. Kyophilavong, Phouphet & Shahbaz, Muhammad & Anwar, Sabeen & Masood, Sameen, 2015. "The energy-growth nexus in Thailand: Does trade openness boost up energy consumption?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 265-274.
    14. Hãœbler, Michael & Keller, Andreas, 2010. "Energy savings via FDI? Empirical evidence from developing countries," Environment and Development Economics, Cambridge University Press, vol. 15(1), pages 59-80, February.
    15. World Bank, 2015. "Urban Fragility and Violence in Africa," World Bank Other Operational Studies 24080, The World Bank.
    16. Eskeland, Gunnar S. & Harrison, Ann E., 2003. "Moving to greener pastures? Multinationals and the pollution haven hypothesis," Journal of Development Economics, Elsevier, vol. 70(1), pages 1-23, February.
    17. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    18. Kofi Adom, Philip & Bekoe, William & Amuakwa-Mensah, Franklin & Mensah, Justice Tei & Botchway, Ebo, 2012. "Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics," Energy, Elsevier, vol. 47(1), pages 314-325.
    19. Elliott, Robert J.R. & Sun, Puyang & Chen, Siyang, 2013. "Energy intensity and foreign direct investment: A Chinese city-level study," Energy Economics, Elsevier, vol. 40(C), pages 484-494.
    20. Adewuyi, Adeolu O. & Adeniyi, Oluwatosin, 2015. "Trade and consumption of energy varieties: Empirical analysis of selected West Africa economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 354-366.
    21. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    22. Mielnik, Otavio & Goldemberg, Jose, 2002. "Foreign direct investment and decoupling between energy and gross domestic product in developing countries," Energy Policy, Elsevier, vol. 30(2), pages 87-89, January.
    23. World Economic Forum & World Bank & African Development Bank & Organisation for Economic Co-operation and Development, 2015. "The Africa Competitiveness Report 2015," World Bank Publications, The World Bank, number 22014, June.
    24. Donald W. Jones, 1989. "Urbanization and Energy Use In Economic Development," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 29-44.
    25. Hassaballa, Hoda, 2014. "Testing for Granger causality between energy use and foreign direct investment Inflows in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 417-426.
    26. Adom, Philip Kofi, 2015. "Asymmetric impacts of the determinants of energy intensity in Nigeria," Energy Economics, Elsevier, vol. 49(C), pages 570-580.
    27. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    28. DiGiacomo, Gigi & King, Robert P., 2015. "Making the transition to organic: ten farm profiles," Miscellaneous Publications 207981, University of Minnesota, Department of Applied Economics.
    29. Adom, Philip K. & Kwakwa, Paul Adjei, 2014. "Effects of changing trade structure and technical characteristics of the manufacturing sector on energy intensity in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 475-483.
    30. Adom, Philip Kofi & Bekoe, William, 2013. "Modelling electricity demand in Ghana revisited: The role of policy regime changes," Energy Policy, Elsevier, vol. 61(C), pages 42-50.
    31. Hee Su Roh & Yinyu Ye, 2015. "Market Making with Model Uncertainty," Papers 1509.07155,, revised Nov 2015.
    32. Cole, Matthew A., 2006. "Does trade liberalization increase national energy use?," Economics Letters, Elsevier, vol. 92(1), pages 108-112, July.
    33. Irma Elo & Elizabeth Frankenberg & Romeo Gansey & Duncan Thomas, 2015. "Africans in the American Labor Market," Demography, Springer;Population Association of America (PAA), vol. 52(5), pages 1513-1542, October.
    34. Adom, Philip Kofi, 2016. "The transition between energy efficient and energy inefficient states in Cameroon," Energy Economics, Elsevier, vol. 54(C), pages 248-262.
    35. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    36. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    37. Akhmat, Ghulam & Zaman, Khalid & Shukui, Tan & Sajjad, Faiza, 2014. "Does energy consumption contribute to climate change? Evidence from major regions of the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 123-134.
    38. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    2. Zeqiraj, Veton & Sohag, Kazi & Soytas, Ugur, 2020. "Stock market development and low-carbon economy: The role of innovation and renewable energy," Energy Economics, Elsevier, vol. 91(C).
    3. Muhammad Shahbaz & Mehmet Akif Destek & Michael L. Polemis, 2018. "Do Foreign Capital and Financial Development Affect Clean Energy Consumption and Carbon Emissions? Evidence from BRICS and Next-11 Countries," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(4), pages 20-50, October-D.
    4. Lin, Boqiang & Xu, Bin, 2018. "Factors affecting CO2 emissions in China's agriculture sector: A quantile regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 15-27.
    5. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, Open Access Journal, vol. 11(11), pages 1-1, June.
    6. Petrović, Predrag & Filipović, Sanja & Radovanović, Mirjana, 2018. "Underlying causal factors of the European Union energy intensity: Econometric evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 216-227.
    7. Amuakwa-Mensah, Franklin & Klege, Rebecca A. & Adom, Philip K. & Amoah, Anthony & Hagan, Edmond, 2018. "Unveiling the energy saving role of banking performance in Sub-Sahara Africa," Energy Economics, Elsevier, vol. 74(C), pages 828-842.
    8. Sarkodie, Samuel Asumadu & Adom, Philip Kofi, 2018. "Determinants of energy consumption in Kenya: A NIPALS approach," Energy, Elsevier, vol. 159(C), pages 696-705.
    9. Adom, Philip Kofi & Adams, Samuel, 2018. "Energy savings in Nigeria. Is there a way of escape from energy inefficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2421-2430.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:925-942. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.