IDEAS home Printed from
   My bibliography  Save this article

Sources of energy productivity growth and its distribution dynamics in China


  • Wang, Chunhua


The purposes of this paper are to determine the sources of energy productivity growth at the provincial level in China and to examine the relative contributions of the sources and their impacts on regional inequality. Energy productivity change is first decomposed into five components attributable to changes in capital-energy ratio, labor-energy ratio, output structure, and technical efficiency change and technological change. Then a nonparametric analysis is implemented to statistically test the relative contributions of the components and their roles in the distribution dynamics of energy productivity. It is found that (1) changes in capital-energy ratio, output structure, and technological change contribute to energy productivity growth in China, (2) increase in capital-energy ratio caused by capital accumulation is the primary driving force for energy productivity growth, and (3) capital accumulation contributes to energy productivity convergence between Chinese provinces over the time period of 1990-2005.

Suggested Citation

  • Wang, Chunhua, 2011. "Sources of energy productivity growth and its distribution dynamics in China," Resource and Energy Economics, Elsevier, vol. 33(1), pages 279-292, January.
  • Handle: RePEc:eee:resene:v:33:y:2011:i:1:p:279-292

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Henderson, Daniel J. & Tochkov, Kiril & Badunenko, Oleg, 2007. "A drive up the capital coast? Contributions to post-reform growth across Chinese provinces," Journal of Macroeconomics, Elsevier, vol. 29(3), pages 569-594, September.
    2. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    3. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, March.
    4. Quah, Danny, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," CEPR Discussion Papers 1586, C.E.P.R. Discussion Papers.
    5. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    6. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 83-116.
    7. Ang, B.W. & Liu, F.L. & Chung, Hyun-Sik, 2004. "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Elsevier, vol. 26(5), pages 757-763, September.
    8. Wang, Chunhua, 2007. "Decomposing energy productivity change: A distance function approach," Energy, Elsevier, vol. 32(8), pages 1326-1333.
    9. Richard F. Garbaccio & Mun S. Ho & Dale W. Jorgenson, 1999. "Why Has the Energy-Output Ratio Fallen in China?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-91.
    10. Sinton, Jonathan E. & Fridley, David G., 2000. "What goes up: recent trends in China's energy consumption," Energy Policy, Elsevier, vol. 28(10), pages 671-687, August.
    11. Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
    12. Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
    13. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    14. Luis R. Murillo-Zamorano, 2005. "The Role of Energy in Productivity Growth: A Controversial Issue?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 69-88.
    15. Quah, Danny T, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," Journal of Economic Growth, Springer, vol. 2(1), pages 27-59, March.
    16. Sinton, Jonathan E. & Levine, Mark D., 1994. "Changing energy intensity in Chinese industry : The relatively importance of structural shift and intensity change," Energy Policy, Elsevier, vol. 22(3), pages 239-255, March.
    17. Fare, Rolf & Grosskopf, Shawna & Norris, Mary, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply," American Economic Review, American Economic Association, vol. 87(5), pages 1040-1043, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
    2. repec:eee:enepol:v:109:y:2017:i:c:p:181-190 is not listed on IDEAS
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Wang, Chunhua, 2013. "Differential output growth across regions and carbon dioxide emissions: Evidence from U.S. and China," Energy, Elsevier, vol. 53(C), pages 230-236.
    5. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    6. Cheong, Tsun Se & Wu, Yanrui, 2014. "The impacts of structural transformation and industrial upgrading on regional inequality in China," China Economic Review, Elsevier, vol. 31(C), pages 339-350.
    7. Gross, Christian, 2012. "Explaining the (non-) causality between energy and economic growth in the U.S.—A multivariate sectoral analysis," Energy Economics, Elsevier, vol. 34(2), pages 489-499.
    8. Stern, David I., 2012. "Modeling international trends in energy efficiency," Energy Economics, Elsevier, vol. 34(6), pages 2200-2208.
    9. repec:spr:chfecr:v:4:y:2016:i:1:d:10.1186_s40589-016-0040-0 is not listed on IDEAS
    10. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    11. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    12. repec:eee:energy:v:128:y:2017:i:c:p:575-585 is not listed on IDEAS
    13. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    14. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
    15. Li, Ke & Zhang, Ning & Liu, Yanchu, 2016. "The energy rebound effects across China’s industrial sectors: An output distance function approach," Applied Energy, Elsevier, vol. 184(C), pages 1165-1175.
    16. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    17. Chunhua Wang, 2016. "Regional Economic Development, Energy Consumption and Carbon Emissions in China," EEPSEA Research Report rr20160338, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2016.
    18. Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
    19. Chen, Xiude & Qin, Quande & Wei, Y.-M., 2016. "Energy productivity and Chinese local officials’ promotions: Evidence from provincial governors," Energy Policy, Elsevier, vol. 95(C), pages 103-112.
    20. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    21. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.
    22. Minzhe Du & Bing Wang & Yanrui Wu, 2014. "Sources of China’s Economic Growth: An Empirical Analysis Based on the BML Index with Green Growth Accounting," Sustainability, MDPI, Open Access Journal, vol. 6(9), pages 1-22, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:33:y:2011:i:1:p:279-292. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.