IDEAS home Printed from
MyIDEAS: Login

Citations for "Evaluation and Combination of Conditional Quantile Forecasts"

by Giacomini, Raffaella & Komunjer, Ivana

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Krenar Avdulaj & Jozef Barunik, 2013. "Can we still benefit from international diversification? The case of the Czech and German stock markets," Papers 1308.6120,, revised Sep 2013.
  2. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2013. "Predicting Covariance Matrices with Financial Conditions Indexes," Tinbergen Institute Discussion Papers 13-113/III, Tinbergen Institute.
  3. Žikeš, Filip & Baruník, Jozef, 2014. "Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility," FinMaP-Working Papers 20, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
  4. Fantazzini, Dean, 2009. "The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2168-2188, April.
  5. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  6. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  7. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
  8. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
  9. Santos, P.A. & Jiménez-Martín, J.A. & McAleer, M.J. & Pérez-Amaral, T., 2011. "GFC-Robust Risk Management Under the Basel Accord Using Extreme Value Methodologies," Econometric Institute Research Papers EI2011-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  10. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
  11. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
  12. Chaker Aloui & Hela BEN HAMIDA, 2015. "Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 30-54, January.
  13. Taylor, James W. & Jeon, Jooyoung, 2015. "Forecasting wind power quantiles using conditional kernel estimation," Renewable Energy, Elsevier, vol. 80(C), pages 370-379.
  14. Juan Carlos Escanciano & Jose Olmo, 2007. "Backtesting Parametric Value-at-Risk with Estimation Risk," Caepr Working Papers 2007-005_updated, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
  15. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel Smith, 2010. "Evaluating Value-at-Risk Models via Quantile Regression," NCER Working Paper Series 67, National Centre for Econometric Research.
  16. Krenar Avdulaj & Jozef Barunik, 2013. "Are benefits from oil - stocks diversification gone? New evidence from a dynamic copula and high frequency data," Papers 1307.5981,, revised Feb 2015.
  17. Chia-Lin Chang & Lydia González-Serrano & Juan-Ángel Jiménez-Martín, 2012. "Currency Hedging Strategies Using Dynamic Multivariate GARCH," Documentos de Trabajo del ICAE 2012-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Feb 2012.
  18. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
  19. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
  20. McAleer, M.J. & Jiménez-Martín, J.A. & Pérez-Amaral, T., 2010. "GFC-Robust Risk Management Strategies under the Basel Accord," Econometric Institute Research Papers EI 2010-59, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  21. Clements, Michael P & Harvey, David I, 2006. "Forecast Encompassing Tests and Probability Forecasts," The Warwick Economics Research Paper Series (TWERPS) 774, University of Warwick, Department of Economics.
  22. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
  23. Niels S. Hansen & Asger Lunde, 2013. "Analyzing Oil Futures with a Dynamic Nelson-Siegel Model," CREATES Research Papers 2013-36, School of Economics and Management, University of Aarhus.
  24. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
  25. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Post-Print peer-00834423, HAL.
  26. Christian T. Brownlees & Giampiero Gallo, 2008. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2008_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  27. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
  28. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, vol. 163(2), pages 215-230, August.
  29. Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
  30. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(2), pages 400-441, March.
  31. Maria Rosa Nieto & Esther Ruiz, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," Statistics and Econometrics Working Papers ws087326, Universidad Carlos III, Departamento de Estadística y Econometría.
  32. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Yoldas, Emre, 2007. "Optimality of the RiskMetrics VaR model," Finance Research Letters, Elsevier, vol. 4(3), pages 137-145, September.
  33. Jason Ng & Catherine S. Forbes & Gael M. Martin & Brendan P.M. McCabe, 2011. "Non-Parametric Estimation of Forecast Distributions in Non-Gaussian, Non-linear State Space Models," Monash Econometrics and Business Statistics Working Papers 11/11, Monash University, Department of Econometrics and Business Statistics.
  34. Halbleib, Roxana & Pohlmeier, Winfried, 2012. "Improving the value at risk forecasts: Theory and evidence from the financial crisis," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1212-1228.
  35. Xu, Qifa & Niu, Xufeng & Jiang, Cuixia & Huang, Xue, 2015. "The Phillips curve in the US: A nonlinear quantile regression approach," Economic Modelling, Elsevier, vol. 49(C), pages 186-197.
  36. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
  37. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
  38. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
  39. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, 03.
  40. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
  41. Escanciano, J. C. & Olmo, J., 2007. "Estimation risk effects on backtesting for parametric value-at-risk models," Working Papers 07/11, Department of Economics, City University London.
  42. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
  43. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
  44. Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898,, revised Oct 2014.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.