IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Canadian Business Cycle: A Comparison of Models

  • Frédérick Demers
  • Ryan Macdonald

This paper examines the ability of linear and nonlinear models to replicate features of real Canadian GDP. We evaluate the models using various business-cycle metrics. From the 9 data generating processes designed, none can completely accommodate every business-cycle metric under consideration. Richness and complexity do not guarantee a close match with Canadian data. Our findings for Canada are consistent with Piger and Morley's (2005) study of the United States data and confirms the contradiction of their results with those reported by Engel, Haugh, and Pagan (2005): nonlinear models do provide an improvement in matching business-cycle features. Lastly, the empirical results suggest that investigating the merits of forecast combination would be worthwhile.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.bankofcanada.ca/wp-content/uploads/2010/02/wp07-38.pdf
Download Restriction: no

Paper provided by Bank of Canada in its series Working Papers with number 07-38.

as
in new window

Length: 35 pages
Date of creation: 2007
Date of revision:
Handle: RePEc:bca:bocawp:07-38
Contact details of provider: Postal: 234 Wellington Street, Ottawa, Ontario, K1A 0G9, Canada
Phone: 613 782-8845
Fax: 613 782-8874
Web page: http://www.bank-banque-canada.ca/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Knüppel, Malte, 2004. "Testing for business cycle asymmetries based on autoregressions with a Markov-switching intercept," Discussion Paper Series 1: Economic Studies 2004,41, Deutsche Bundesbank, Research Centre.
  2. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
  3. McQueen, Grant & Thorley, Steven, 1993. "Asymmetric business cycle turning points," Journal of Monetary Economics, Elsevier, vol. 31(3), pages 341-362, June.
  4. Daniel E. Sichel, 1989. "Business cycle asymmetry: a deeper look," Working Paper Series / Economic Activity Section 93, Board of Governors of the Federal Reserve System (U.S.).
  5. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
  6. Hans-Martin Krolzig & Michael Clements, 2000. "Business Cycle Asymmetries: Characterisation and Testing based on Markov-Switching Autoregressions," Economics Series Working Papers 2000-W32, University of Oxford, Department of Economics.
  7. Timmermann, Allan, 2000. "Moments of Markov switching models," Journal of Econometrics, Elsevier, vol. 96(1), pages 75-111, May.
  8. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  9. Philip M. Bodman & Mark Crosby, 2000. "Phases of the Canadian business cycle," Canadian Journal of Economics, Canadian Economics Association, vol. 33(3), pages 618-633, August.
  10. Marcelle Chauvet & James D. Hamilton, 2005. "Dating Business Cycle Turning Points," NBER Working Papers 11422, National Bureau of Economic Research, Inc.
  11. A. Pagan & J. Engel & D. Haugh, 2004. "Some Methods for Assessing the Need for Non-linear Models in Business Cycle Analysis and Forecasting," Econometric Society 2004 Australasian Meetings 284, Econometric Society.
  12. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-28, April.
  13. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S61-82, Suppl. De.
  14. Adrian Pagan & Don Harding, 2005. "A suggested framework for classifying the modes of cycle research," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 151-159.
  15. James Morley & Jeremy M. Piger, 2005. "The importance of nonlinearity in reproducing business cycle features," Working Papers 2004-032, Federal Reserve Bank of St. Louis.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:07-38. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.