IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v62y2022ics0275531922001404.html
   My bibliography  Save this article

Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales

Author

Listed:
  • Kakinaka, Shinji
  • Umeno, Ken

Abstract

This study investigates the scale-dependent structure of asymmetric volatility effect in six representative cryptocurrencies: Bitcoin, Ethereum, Ripple, Litecoin, Monero, and Dash. By developing the dynamical approach of DFA-based fractal regression analysis, we detect whether the volatility of price changes is positively or negatively related to return shocks at different time scales. We find that the asymmetric volatility phenomenon varies by scale and cryptocurrency, and the structure is time-varying. Contrary to what is typically observed in equity markets, minor currencies show an “inverse” asymmetric volatility effect at relatively large scales, where positive shocks (good news) have a greater impact on volatility than negative shocks (bad news). The consequences are discussed in the context of who is trading in the market and heterogeneity of the investors.

Suggested Citation

  • Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
  • Handle: RePEc:eee:riibaf:v:62:y:2022:i:c:s0275531922001404
    DOI: 10.1016/j.ribaf.2022.101754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531922001404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2022.101754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    2. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    4. Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
    5. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    6. Fakhfekh, Mohamed & Hachicha, Nejib & Jawadi, Fredj & Selmi, Nadhem & Idi Cheffou, Abdoulkarim, 2016. "Measuring volatility persistence for conventional and Islamic banks: An FI-EGARCH approach," Emerging Markets Review, Elsevier, vol. 27(C), pages 84-99.
    7. Hens, Thorsten & Steude, Sven C., 2009. "The leverage effect without leverage," Finance Research Letters, Elsevier, vol. 6(2), pages 83-94, June.
    8. Tilfani, Oussama & Ferreira, Paulo & El Boukfaoui, My Youssef, 2019. "Building multi-scale portfolios and efficient market frontiers using fractal regressions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
    9. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    10. Kristjanpoller, Werner & Bouri, Elie, 2019. "Asymmetric multifractal cross-correlations between the main world currencies and the main cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1057-1071.
    11. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    12. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    13. Cheung, Yin-Wong & Ng, Lilian K, 1992. "Stock Price Dynamics and Firm Size: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 47(5), pages 1985-1997, December.
    14. Bentes, Sonia R., 2018. "Is stock market volatility asymmetric? A multi-period analysis for five countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 258-265.
    15. da Silva Filho, Antônio Carlos & Maganini, Natália Diniz & de Almeida, Eduardo Fonseca, 2018. "Multifractal analysis of Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 954-967.
    16. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    17. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    18. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    19. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    20. Doron Avramov & Tarun Chordia & Amit Goyal, 2006. "The Impact of Trades on Daily Volatility," Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1241-1277.
    21. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    22. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    23. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    24. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    25. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    26. Stanis{l}aw Dro.zd.z & Robert Gk{e}barowski & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marcin Wk{a}torek, 2018. "Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects," Papers 1804.05916, arXiv.org, revised Jul 2018.
    27. Telli, Şahin & Chen, Hongzhuan, 2020. "Multifractal behavior in return and volatility series of Bitcoin and gold in comparison," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    28. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    29. Zhang, Xin & Yang, Liansheng & Zhu, Yingming, 2019. "Analysis of multifractal characterization of Bitcoin market based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 973-983.
    30. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    31. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    2. Dora Almeida & Andreia Dionísio & Paulo Ferreira & Isabel Vieira, 2023. "Impact of the COVID-19 Pandemic on Cryptocurrency Markets: A DCCA Analysis," FinTech, MDPI, vol. 2(2), pages 1-17, May.
    3. Ghosh, Bikramaditya & Bouri, Elie & Wee, Jung Bum & Zulfiqar, Noshaba, 2023. "Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs," Research in International Business and Finance, Elsevier, vol. 65(C).
    4. Waqas Hanif & Hee-Un Ko & Linh Pham & Sang Hoon Kang, 2023. "Dynamic connectedness and network in the high moments of cryptocurrency, stock, and commodity markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    5. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2023. "Cryptocurrencies Are Becoming Part of the World Global Financial Market," Papers 2303.00495, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. T. Takaishi, 2021. "Power-Law Return-Volatility Cross Correlations of Bitcoin," Papers 2102.08187, arXiv.org.
    4. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
    5. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    6. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    7. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    8. Telli, Şahin & Chen, Hongzhuan, 2020. "Multifractal behavior in return and volatility series of Bitcoin and gold in comparison," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    10. Cristiana Vaz & Rui Pascoal & Helder Sebastião, 2021. "Price Appreciation and Roughness Duality in Bitcoin: A Multifractal Analysis," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    11. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    12. Telli, Şahin & Chen, Hongzhuan, 2021. "Multifractal behavior relationship between crypto markets and Wikipedia-Reddit online platforms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
    14. Tetsuya Takaishi & Takanori Adachi, 2019. "Market efficiency, liquidity, and multifractality of Bitcoin: A dynamic study," Papers 1902.09253, arXiv.org.
    15. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    16. Tetsuya Takaishi & Takanori Adachi, 2020. "Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 145-154, March.
    17. Wang, Jying-Nan & Liu, Hung-Chun & Lee, Yen-Hsien & Hsu, Yuan-Teng, 2023. "FoMO in the Bitcoin market: Revisiting and factors," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 244-253.
    18. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    19. Ghosh, Bikramaditya & Bouri, Elie & Wee, Jung Bum & Zulfiqar, Noshaba, 2023. "Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs," Research in International Business and Finance, Elsevier, vol. 65(C).
    20. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:62:y:2022:i:c:s0275531922001404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.