IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp954-967.html
   My bibliography  Save this article

Multifractal analysis of Bitcoin market

Author

Listed:
  • da Silva Filho, Antônio Carlos
  • Maganini, Natália Diniz
  • de Almeida, Eduardo Fonseca

Abstract

The recent emergence and use growth of cryptocurrencies based on Blockchain technology increased interest in the study of its economic dynamics and financial characteristics. Bitcoin is up to now the more widely known and disseminated cryptocurrency, with greater volume of transactions, market value and acceptance in exchange services. In order to contribute to the comprehension of the price behavior of the Bitcoin market, this study analyzes whether the historical series of prices of this currency, quoted every 12 h from September 14, 2011 to November 20, 2017 has multifractal behavior. The results of the research identified multifractal characteristics in the series and that both long-range correlations and fat tails distribution contribute to Bitcoin’s multifractal behavior. We compared the non-Gaussian properties and the multifractality degrees of Bitcoin series with the non-Gaussian properties and multifractality degrees of several stock market indices scattered around the world. In addition, we investigated the power of multifractal analysis in the study of volatility and forecast for this series, pointing to a possible use of multifractal parameters in Technical Analysis.

Suggested Citation

  • da Silva Filho, Antônio Carlos & Maganini, Natália Diniz & de Almeida, Eduardo Fonseca, 2018. "Multifractal analysis of Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 954-967.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:954-967
    DOI: 10.1016/j.physa.2018.08.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118310173
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grech, Dariusz, 2016. "Alternative measure of multifractal content and its application in finance," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 183-195.
    2. Sergio R. S. Souza & Benjamin M. Tabak & Daniel O. Cajueiro, 2008. "Long-Range Dependence In Exchange Rates: The Case Of The European Monetary System," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 199-223.
    3. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    4. Lu, Xinsheng & Tian, Jie & Zhou, Ying & Li, Zhihui, 2013. "Multifractal detrended fluctuation analysis of the Chinese stock index futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1452-1458.
    5. Grau-Carles, Pilar, 2000. "Empirical evidence of long-range correlations in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 396-404.
    6. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    7. Norouzzadeh, P. & Rahmani, B., 2006. "A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 328-336.
    8. Oświe¸cimka, P. & Kwapień, J. & Drożdż, S., 2005. "Multifractality in the stock market: price increments versus waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 626-638.
    9. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    10. Benbachir, Saâd & El Alaoui, Marwane, 2011. "A Multifractal Detrended Fluctuation Analysis of the Moroccan Stock Exchange," MPRA Paper 49003, University Library of Munich, Germany.
    11. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    12. Rainer Böhme & Nicolas Christin & Benjamin Edelman & Tyler Moore, 2015. "Bitcoin: Economics, Technology, and Governance," Journal of Economic Perspectives, American Economic Association, vol. 29(2), pages 213-238, Spring.
    13. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    14. Chen, Hongtao & Wu, Chongfeng, 2011. "Forecasting volatility in Shanghai and Shenzhen markets based on multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2926-2935.
    15. Cajueiro, Daniel O. & Gogas, Periklis & Tabak, Benjamin M., 2009. "Does financial market liberalization increase the degree of market efficiency? The case of the Athens stock exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 50-57, March.
    16. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    17. Norouzzadeh, P. & Jafari, G.R., 2005. "Application of multifractal measures to Tehran price index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 609-627.
    18. Stošić, Darko & Stošić, Dusan & Stošić, Tatijana & Stanley, H. Eugene, 2015. "Multifractal analysis of managed and independent float exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 13-18.
    19. Wang, Fang & Liao, Gui-ping & Li, Jian-hui & Li, Xiao-chun & Zhou, Tie-jun, 2013. "Multifractal detrended fluctuation analysis for clustering structures of electricity price periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5723-5734.
    20. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    21. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    22. Maganini, Natália Diniz & Da Silva Filho, Antônio Carlos & Lima, Fabiano Guasti, 2018. "Investigation of multifractality in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 258-271.
    23. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
    24. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    25. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    26. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    27. Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
    28. Kwapień, J. & Oświe¸cimka, P. & Drożdż, S., 2005. "Components of multifractality in high-frequency stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 466-474.
    29. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    30. Juan Luis Lopez & Jesus Guillermo Contreras, 2013. "Performance of multifractal detrended fluctuation analysis on short time series," Papers 1311.2278, arXiv.org.
    31. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    32. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    33. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    34. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    35. Qiu, Tian & Chen, Guang & Zhong, Li-Xin & Lei, Xiao-Wei, 2011. "Memory effect and multifractality of cross-correlations in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 828-836.
    36. Abounoori, Esmaiel & Shahrazi, Mahdi & Rasekhi, Saeed, 2012. "An investigation of Forex market efficiency based on detrended fluctuation analysis: A case study for Iran," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3170-3179.
    37. Ausloos, M., 2000. "Statistical physics in foreign exchange currency and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 48-65.
    38. Bai, Man-Ying & Zhu, Hai-Bo, 2010. "Power law and multiscaling properties of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1883-1890.
    39. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Telli, Şahin & Chen, Hongzhuan, 2020. "Multifractal behavior in return and volatility series of Bitcoin and gold in comparison," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Cristiana Vaz & Rui Pascoal & Helder Sebastião, 2021. "Price Appreciation and Roughness Duality in Bitcoin: A Multifractal Analysis," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    4. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    5. Telli, Şahin & Chen, Hongzhuan, 2020. "Structural breaks and trend awareness-based interaction in crypto markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    6. Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. C. R. da Cunha & R. da Silva, 2019. "Relevant Stylized Facts About Bitcoin: Fluctuations, First Return Probability, and Natural Phenomena," Papers 1905.03211, arXiv.org.
    9. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    10. Nie, Chun-Xiao, 2020. "Correlation dynamics in the cryptocurrency market based on dimensionality reduction analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    11. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    12. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    13. Ahmad Firdaus & Mohd Faizal Ab Razak & Ali Feizollah & Ibrahim Abaker Targio Hashem & Mohamad Hazim & Nor Badrul Anuar, 2019. "The rise of “blockchain”: bibliometric analysis of blockchain study," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1289-1331, September.
    14. Faheem Aslam & Paulo Ferreira & Haider Ali & Sumera Kauser, 2022. "Herding behavior during the Covid-19 pandemic: a comparison between Asian and European stock markets based on intraday multifractality," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(2), pages 333-359, June.
    15. Diniz-Maganini, Natalia & Rasheed, Abdul A. & Sheng, Hsia Hua, 2021. "Exchange rate regimes and price efficiency: Empirical examination of the impact of financial crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    16. Fousekis, Panos & Tzaferi, Dimitra, 2022. "Price multifractality and informational efficiency in the futures markets of the US soybean complex," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 66, pages 68-84.
    17. Telli, Şahin & Chen, Hongzhuan, 2021. "Multifractal behavior relationship between crypto markets and Wikipedia-Reddit online platforms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Telli, Şahin & Chen, Hongzhuan & Zhao, Xufeng, 2022. "Detecting multifractality and exposing distributions of local fluctuations: Detrended fluctuation analysis with descriptive statistics pooling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maganini, Natália Diniz & Da Silva Filho, Antônio Carlos & Lima, Fabiano Guasti, 2018. "Investigation of multifractality in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 258-271.
    2. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    3. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    4. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    5. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    6. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    7. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    8. Stavroyiannis, Stavros & Babalos, Vassilios & Bekiros, Stelios & Lahmiri, Salim & Uddin, Gazi Salah, 2019. "The high frequency multifractal properties of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 62-71.
    9. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    10. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    11. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    12. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    13. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    14. Chatterjee, Sucharita, 2020. "Analysis of the human gait rhythm in Neurodegenerative disease: A multifractal approach using Multifractal detrended cross correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    16. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    17. Diniz-Maganini, Natalia & Rasheed, Abdul A. & Sheng, Hsia Hua, 2021. "Exchange rate regimes and price efficiency: Empirical examination of the impact of financial crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    18. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    19. Gu, Danlei & Huang, Jingjing, 2019. "Multifractal detrended fluctuation analysis on high-frequency SZSE in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 225-235.
    20. Delbianco, Fernando & Tohmé, Fernando & Stosic, Tatijana & Stosic, Borko, 2016. "Multifractal behavior of commodity markets: Fuel versus non-fuel products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 573-580.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:954-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.