IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v128y2023ics0140988323006813.html
   My bibliography  Save this article

The connectedness of Energy Transition Metals

Author

Listed:
  • Bastianin, Andrea
  • Casoli, Chiara
  • Galeotti, Marzio

Abstract

We assess the degree of connectedness among 16 metals that are critical for the production of clean energy technologies. These commodities are the constituents of the Energy Transition Metals (ETMs) price index maintained by the International Monetary Fund and comprise base, precious, and minor metals. We rely on Vector Autoregressive models and generalised forecast error variance decomposition to quantify spillovers among ETMs returns and volatilities. By calculating both static and dynamic measures of connectedness, we gain insight into the patterns of shock transmission between ETMs. Our static analysis reveals that base and precious metals are net shock transmitters, while minor and most battery metals are net receivers. By splitting the analysis into three groups, we find that almost half of the connectedness originates within each group, whereas the other half is due to cross-group spillovers. Moreover, we find that the system-wide connectedness of returns is positively correlated with proxies of economic activity, whereas volatility connectedness seems to be more related to global economic policy uncertainty.

Suggested Citation

  • Bastianin, Andrea & Casoli, Chiara & Galeotti, Marzio, 2023. "The connectedness of Energy Transition Metals," Energy Economics, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006813
    DOI: 10.1016/j.eneco.2023.107183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323006813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2017. "Oil supply shocks and economic growth in the Mediterranean," Energy Policy, Elsevier, vol. 110(C), pages 167-175.
    2. Caldara, Dario & Iacoviello, Matteo & Molligo, Patrick & Prestipino, Andrea & Raffo, Andrea, 2020. "The economic effects of trade policy uncertainty," Journal of Monetary Economics, Elsevier, vol. 109(C), pages 38-59.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. García, Carlos J. & González, Wildo D., 2013. "Exchange rate intervention in small open economies: The role of risk premium and commodity price shocks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 424-447.
    5. Zhu, Xuening & Wang, Weining & Wang, Hansheng & Härdle, Wolfgang Karl, 2019. "Network quantile autoregression," Journal of Econometrics, Elsevier, vol. 212(1), pages 345-358.
    6. Atsushi Sekine & Takayuki Tsuruga, 2018. "Effects of commodity price shocks on inflation: a cross-country analysis," Oxford Economic Papers, Oxford University Press, vol. 70(4), pages 1108-1135.
    7. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    8. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    9. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    10. Peersman, Gert & Van Robays, Ine, 2012. "Cross-country differences in the effects of oil shocks," Energy Economics, Elsevier, vol. 34(5), pages 1532-1547.
    11. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    12. Hadi Salehi Esfahani & Kamiar Mohaddes & M. Hashem Pesaran, 2014. "An Empirical Growth Model For Major Oil Exporters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 1-21, January.
    13. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    14. Fally, Thibault & Sayre, James E., 2018. "Commodity Trade Matters," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9121v3rt, Department of Agricultural & Resource Economics, UC Berkeley.
    15. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    16. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    17. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    18. Gilbert E. Metcalf, 2014. "The Economics of Energy Security," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 155-174, October.
    19. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    20. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    21. Éléonore Lèbre & Martin Stringer & Kamila Svobodova & John R. Owen & Deanna Kemp & Claire Côte & Andrea Arratia-Solar & Rick K. Valenta, 2020. "The social and environmental complexities of extracting energy transition metals," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    22. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    23. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    24. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    25. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    26. Steven J. Davis, 2016. "An Index of Global Economic Policy Uncertainty," NBER Working Papers 22740, National Bureau of Economic Research, Inc.
    27. M. Hakan Berument & Nildag Basak Ceylan & Nukhet Dogan, 2010. "The Impact of Oil Price Shocks on the Economic Growth of Selected MENA1 Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 149-176.
    28. Maryam Ahmadi & Matteo Manera, 2021. "Oil Price Shocks and Economic Growth in Oil-Exporting Countries," Working Papers 2021.13, Fondazione Eni Enrico Mattei.
    29. Francis X. Diebold & Kamil Yilmaz, 2022. "On the Past, Present, and Future of the Diebold-Yilmaz Approach to Dynamic Network Connectedness," Koç University-TUSIAD Economic Research Forum Working Papers 2207, Koc University-TUSIAD Economic Research Forum.
    30. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    31. Matteo Barigozzi & Giuseppe Cavaliere & Graziano Moramarco, 2022. "Factor Network Autoregressions," Papers 2208.02925, arXiv.org, revised Feb 2024.
    32. Tidiane Kinda & Montfort Mlachila & Rasmane Ouedraogo, 2018. "Do commodity price shocks weaken the financial sector?," The World Economy, Wiley Blackwell, vol. 41(11), pages 3001-3044, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    2. Apostolakis, George N. & Floros, Christos & Gkillas, Konstantinos & Wohar, Mark, 2021. "Financial stress, economic policy uncertainty, and oil price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    3. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    4. Gong, Jue & Wang, Gang-Jin & Zhou, Yang & Zhu, You & Xie, Chi & Foglia, Matteo, 2023. "Spreading of cross-market volatility information: Evidence from multiplex network analysis of volatility spillovers," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    5. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    6. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    7. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    8. Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Commodity Connectedness," Central Banking, Analysis, and Economic Policies Book Series, in: Enrique G. Mendoza & Ernesto Pastén & Diego Saravia (ed.),Monetary Policy and Global Spillovers: Mechanisms, Effects and Policy Measures, edition 1, volume 25, chapter 4, pages 097-136, Central Bank of Chile.
    9. Yu Chen & Jie Hu & Weiping Zhang, 2020. "Too Connected to Fail? Evidence from a Chinese Financial Risk Spillover Network," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(6), pages 78-100, November.
    10. Buchen, Teresa, 2014. "News Media, Common Information, and Sectoral Comovement," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100391, Verein für Socialpolitik / German Economic Association.
    11. Christian Gross & Pierre L. Siklos, 2020. "Analyzing credit risk transmission to the nonfinancial sector in Europe: A network approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 61-81, January.
    12. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    13. Uluceviz, Erhan & Yilmaz, Kamil, 2021. "Measuring real–financial connectedness in the U.S. economy," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    14. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    15. Cheng, Tingting & Liu, Junli & Yao, Wenying & Zhao, Albert Bo, 2022. "The impact of COVID-19 pandemic on the volatility connectedness network of global stock market," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    16. Ben Amar, Amine & Goutte, Stéphane & Isleimeyyeh, Mohammad, 2022. "Asymmetric cyclical connectedness on the commodity markets: Further insights from bull and bear markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 386-400.
    17. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    18. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    19. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    20. Costantini, Mauro & Maaitah, Ahmad & Mishra, Tapas & Sousa, Ricardo M., 2023. "Bitcoin market networks and cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    More about this item

    Keywords

    Connectedness; Energy Transition; Metals; Raw materials;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.